
Replica Method for the Machine Learning Theorist
Blake Bordelon, Haozhe Shan, Abdul Canatar, Boaz Barak, Cengiz Pehlevan [Boaz’s note:
Blake and Haozhe were students in the ML theory seminar; in that seminar we touched on the replica method
in the lecture on inference and statistical physics but here Blake and Haozhe (with a little help from the rest
of us) give a great overview of the method and its relations to ML. See also all seminar posts.]

I. Analysis of Optimization Problems with Statistical Physics
In computer science and machine learning, we are often interested in solving optimization problems of the
form

min
𝑥∈𝒮

𝐻(𝑥, 𝒟)

where 𝐻 is an objective function which depends on our decision variables 𝑥 ∈ 𝒮 as well as on a set of
problem-specific parameters 𝒟. Frequently, we encounter problems relevant to machine learning, where 𝒟 is
a random variable. The replica method is a useful tool to analyze large problems and their typical behavior
over the distribution of 𝒟.

Here are a few examples of problems that fit this form: 1. In supervised learning, 𝐻 may be a training
loss, 𝑥 a set of neural network weights and 𝒟 the data points and their labels 2. We may want to find the
most efficient way to visit all nodes on a graph. In this case 𝒟 describes nodes and edges of the graph, 𝑥
is a representation of the set of chosen edges, and 𝐻 can be the cost of 𝑥 if 𝑥 encodes a valid path and
∞ (or a very large number ) if it doesn’t encode a valid path. 3. Satisfiability: 𝑥 ∈ {0, 1}𝑁 is a collection
booleans which must satisfy a collection of constraints. In this case the logical constraints (clauses) are the
parameters 𝒟. 𝐻(𝑥) can be the number of constraints violated by 𝑥. 4. Recovery of structure in noisy data:
𝑥 is our guess of the structure and 𝒟 are instances of the observed noisy data. For example PCA attempts
to identify the directions of maximal variation in the data. With the replica method, we could ask how the
accuracy of the estimated top eigenvector degrades with noise.

II. The Goal of the Replica Method
The replica method is a way to calculate the value of some statistic (observable in physics-speak) 𝑂(𝑥)
of 𝑥 where 𝑥 is a “typical” minimizer of 𝐻(𝑥, 𝒟) and 𝒟 is a “typical” value for the parameters (which are
also known in physics-speak as the disorder).

In Example 1 (supervised learning), the observable may be the generalization error of a chosen algorithm
(e.g. a linear classifier) on a given dataset. For Example 2 (path), this could be the cost of the best path. For
Example 3 (satisfiability), the observable might be whether or not a solution exists at all for the problem.
In Example 4 (noisy data), the observable might be the quality of decoded data (distance from ground truth
under some measure).

An observable like generalization error obviously depends on 𝒟, the problem instance. However, can we say
something more general about this type of problem? In particular, if 𝒟 obeys some probability distribution,
is it possible to characterize the the typical observable over different problem instances 𝒟?

For instance, in Example 1, we can draw all of our training data from a distribution. For each random
sample of data points 𝒟, we find the set of 𝑥 which minimize 𝐻(𝑥, 𝒟) and compute a generalization error.
We then repeat this procedure many times and average the results. Sometimes, there are multiple 𝑥 that
minimize 𝐻 for a given sample of 𝒟; this requires averaging the observable over all global minima for each
𝒟 first, before averaging over different 𝒟.

To give away a “spolier”, towards the end of this note, we will see how to use the replica method to give
accurate predictions of performance for noisy least square fitting and spiked matrix recovery.

1

https://boazbk.github.io/mltheoryseminar/cs229br.html#plan
https://windowsontheory.org/2021/04/02/inference-and-statistical-physics/
https://windowsontheory.org/category/ml-theory-seminar/


Generalization gap in least squares ridge regression, figure taken from Canatar, Bordelon, and Pehlevan
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Performance (agreement with planted signal) as function of signal strength for spiked matrix recovery, as the
dimension grows, the experiment has stronger agreement with theory. See also Song Mei’s exposition

A. What do we actually do?

Now that we are motivated, let’s see what quantities the replica method attempts to obtain. In general, given
some observable 𝑂(𝑥, 𝒟), the average of 𝑂 over a minimizer 𝑥 chosen at random from the set argmin𝐻(𝑥, 𝒟),
and take the average of this quantity over the choice of the disorder 𝒟. In other words, we want to compute
the following quantity:

Desired quantity = 𝔼𝒟𝔼𝑥∈arg min 𝐻(𝑥,𝒟) [𝑂(𝑥, 𝒟)]

The above equation has two types of expectation- over the disorder 𝐷, and over the minimizers 𝑥. The physics
convention is to * use ⟨𝑓⟩𝒟 for the expectation of a function 𝑓(𝒟) over the disorder 𝒟 * use ∫ 𝑔(𝑥)𝜇(𝑥)𝑑𝑥
for the expectation of a function 𝑔(𝑥) over 𝑥 chosen according to some measure 𝜇.
Using this notation, we can write the above as

Desired quantity = ⟨∫ 𝑝∗(𝑥; 𝒟)𝑂(𝑥, 𝒟)𝑑𝑥⟩
𝒟

where ⟨⟩𝒟 denotes an average over the probability measure for problem parameters 𝒟, and 𝑝∗(𝑥; 𝒟) is a
uniform distribution over the set of 𝑥 that minimize 𝐻(𝑥, 𝒟) with zero probability mass placed on sub-
optimal points.

The ultimate goal of the replica method is to express

Desired quantity = solution of optimization on constant number of variables
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but it will take some time to get there.

B. The concept of “self-averaging” and concentration

Above, we glossed over an important distinction between the “typical” value of 𝑓(𝒟) = ∫ 𝑝∗(𝑥; 𝒟)𝑂(𝑥, 𝒟)𝑑𝑥
and the average value of 𝑓(𝒟). This is OK only when we have concentration in the sense that with high
probability over the choice of 𝒟, 𝑓(𝒟) is close to its expected value. We define this as the property that
with probability at least 1 − 𝜖, the quantity 𝑓(𝒟) is within a 1 ± 𝜖 multiplicative factor of its expectation,
whwere 𝜖 is some quantity that goes to zero as the system size grows. A quantity 𝑓(⋅) that concentrates in
this sense is called self averaging.

For example, suppose that 𝑋 = ∑𝑛
𝑖=1 𝑋𝑖 where each 𝑋𝑖 equals 1 with probabilty 1/2 and 0 with probability

1/2 independently. Standard Chernoff bounds show that with high probability 𝑋 ∈ [𝑛/2 ± 𝑂(√𝑛)] or
𝑋

𝔼𝑋 ∈ (1 + 𝑂( 1√𝑛 )). Hence 𝑋 is a self averaging quantity.

In contrast the random variable 𝑌 = 2𝑋 is not self averaging. Since 𝑌 = ∏𝑛
𝑖=1 2𝑋𝑖 and these random

variables are independent, we know that 𝔼𝑌 = ∏𝑛
𝑖=1 𝔼2𝑋𝑖 = ( 1

2 21 + 1
2 20)𝑛 = (3/2)𝑛. However, with high

probability a typical value of 𝑌 will be of the form 2𝑛/2±𝑂(√𝑛) =
√

2𝑛±𝑂(√𝑛)
. Since

√
2 < 3/2 we see that

the typical value of 𝑌 is exponentially smaller than the expected value of 𝑌 .

The example above is part of a more general pattern. Often even if a variable 𝑌 is not self averaging, the
variable 𝑋 = log𝑌 will be self-averaging. Hence if we are interested in the typical value of 𝑌 , the quantity
exp (𝔼[log𝑌 ]) is more representative than the quantity 𝔼[𝑌 ].

C. When is using the replica replica method a good idea?

Suppose that we want to compute a quantity of the form above. When is it a good idea to use the replica
method to do so? Generally, we would want it to satisfy the following conditions:

1. The learning problem is high dimensional with a large budget of data. The replica method describes
a thermodynamic limit where the system size and data budget are taken to infinity with some fixed
ratio between the two quantities. Such a limit is obviously never achieved in reality, but in practice
sufficiently large learning problems can be accurately modeled by the method.

2. The loss or the constraints are convenient functions of 𝑥 and 𝒟. Typically 𝐻 will be a low degree
polynomial or a sum of local functions (each depending on small number of variables) in 𝑥.

3. Averages over the disorder in 𝒟 are tractable analytically. That is, we can compute marginals of the
distribution over 𝒟.

4. The statistic that we are interested in is self-averaging.

If the above conditions aren’t met, it is unlikely that this problem will gain much analytical insight from the
replica method.

III. The Main Conceptual Steps Behind Replica Calculations
We now describe the conceptual steps that are involved in calculating a quantity using the replica method.
They are also outlined in this figure:
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Step 1:“Softening” Constraints with the Gibbs Measure

The uniform measure on minimizers 𝑝∗(𝑥; 𝒟) is often difficult to work with. To aid progress, we can think of
it as a special case of what is known as the Gibbs measure, defined as 𝑝𝛽(𝑥; 𝒟)𝑑𝑥 = 1

𝑍(𝒟) exp (−𝛽𝐻(𝑥, 𝒟)) 𝑑𝑥

where 𝑍(𝒟) = ∫ exp (−𝛽𝐻(𝑥, 𝒟)) 𝑑𝑥 is the normalization factor, or partition function. 𝛽 is called the
inverse temperature, a name from thermodynamics. It is easy to see that when 𝛽 → ∞ (i.e., when
the temperature tends to the absolute zero), the Gibbs measure converges to a uniform distribution on the
minimizers of 𝐻: 𝑝𝛽 → 𝑝∗.

Hence we can write

Desired quantity = ⟨∫ 𝑝∗(𝑥; 𝒟)𝑂(𝑥, 𝒟)𝑑𝑥⟩𝒟 = ⟨lim𝛽→∞ ∫ 𝑝𝛽(𝑥; 𝒟)𝑂(𝑥, 𝒟)𝑑𝑥⟩𝒟
Physicists often exchange the order of limits and expectations at will, which generally makes sense in this
setting, and so assume

Desired quantity = lim𝛽→∞ ⟨∫ 𝑝𝛽(𝑥; 𝒟)𝑂(𝑥, 𝒟)𝑑𝑥⟩𝒟
Thus general approach taken in the replica method is to derive an expression for the average observable for
any 𝛽 and then take the 𝛽 → ∞ limit. The quantity ∫ 𝑝𝛽(𝑥; 𝒟)𝑂(𝑥, 𝒟)𝑑𝑥 is also known as the thermal
average of 𝑂, since it is taken with respect to the Gibbs distribution at some positive temperature.

To compute the thermal average of 𝑂, we define the following augmented partition function:

𝑍(𝒟, 𝐽) = ∫𝑆 exp (−𝛽𝐻(𝑥, 𝒟) + 𝐽𝑂(𝑥; 𝒟)) 𝑑𝑥.
One can then check that
𝑑

𝑑𝐽 log𝑍(𝒟, 𝐽)∣
𝐽=0

= 1
𝑍 ∫ 𝑂(𝑥, 𝒟) exp(−𝛽𝐻(𝑥, 𝒟))𝑑𝑥 = ∫ 𝑝𝛽(𝑥; 𝒟)𝑂(𝑥, 𝒟)𝑑𝑥

Hence our desired quantity can be obtained as
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Desired quantity = lim𝛽→∞
𝜕

𝜕𝐽 ⟨log𝑍(𝒟, 𝐽)⟩𝒟 (0)
or (assuming we can again exchange limits at will):

Desired quantity = lim𝜖→0
1
𝜖 [lim𝛽→∞ ⟨log𝑍(𝒟, 𝜖)⟩𝒟 − lim𝛽→∞ ⟨log𝑍(𝒟, 0)⟩𝒟]

We see that ultimately computing the desired quantity reduces to computing quantities of the form

⟨log𝑍′(𝒟)⟩𝒟 (�)
for the original or modified partition function 𝑍′. Hence our focus from now on will be on computing (�).
Averaging over 𝒟 is known as “configurational average” or quenched average. All together, we obtain the
observable, first thermal averaged to get 𝑂∗(𝒟) (averaged over 𝑝∗(𝑥; 𝒟)) and then quenched averaged over
𝒟.

� What Concentrates?: It is not just an algebraic convenience to average log𝑍 instead of averag-
ing 𝑍 itself. When the system size 𝑁 is large, 1

𝑁 log𝑍 concentrates around its average. Thus, the
typical behavior of the system can be understood by studying the quenched average 1

𝑁 ⟨log𝑍⟩
The partition function 𝑍 itself often does not concentrate and in general the values 1

𝑁 log ⟨𝑍⟩
(known as the “annealed average”) and 1

𝑁 ⟨log𝑍⟩ (known as the “quenched average”) could dif-
fer subtantially. For more information, please consult Mezard and Montanari’s excellent book,
Chapter 5.

Step 2: The Replica Trick

Hereafter, we use ⟨⋅⟩ to denote the average and drop the dependence of 𝒟 and 𝐽 . To compute ⟨log𝑍(𝒟, 𝐽)⟩𝒟,
we use an identity

⟨log𝑍⟩ = lim
𝑛→0

1
𝑛 log ⟨𝑍𝑛⟩ .

For the limit to make sense, 𝑛 should be any real number. However, the expression for 𝑍𝑛 is only easily
computable for natural numbers. � This step is non-rigorous: we will obtain an expression for log⟨𝑍𝑛⟩ for
natural number 𝑛, and then take the 𝑛 → 0 limit after the fact.

Recall that under the Gibbs distribution 𝑝𝛽(𝒟), the probability density on state 𝑥 is equal to
exp(−𝛽𝐻(𝑥, 𝒟))/𝑍(𝒟). Denote by 𝑝𝛽(𝒟)𝑛 the probability distribution over a tuple ⃗𝑥 = (𝑥(1), … , 𝑥(𝑛)) of 𝑛
independent samples (also known as replicas) chosen from 𝑝𝛽(𝒟).
Since the partition function 𝑍 is an integral (or sum in the discrete case) of the form ∫ exp(−𝛽𝐻(𝑥; 𝒟))𝑑𝑥, we
can write 𝑍(𝒟)𝑛 as the integral of ∏𝑛

𝑎=1 exp(−𝛽𝐻(𝑥(𝑎); 𝒟)) = exp (−𝛽 ∑𝑛
𝑎=1 𝐻(𝑥(𝑎), 𝒟)) where 𝑥(1), … , 𝑥(𝑛)

are independent variables.

Now since each 𝑥(𝑎) is weighed with a factor of exp(−𝛽𝐻(𝑥(𝑎)); 𝒟), this expression can be shown as equal
to taking expectation of some exponential function exp(∑𝑛

𝑎=1 𝐺(𝑥(𝑎); 𝒟)) over a tuple (𝑥(1), … , 𝑥(𝑛)) of 𝑛
independent samples of replicas all coming from the same Gibbs distribution 𝑝𝛽(𝒟) corresponding to the
same instance 𝒟. (The discussion on 𝐺 is just for intuition - we will not care about the particular form of
this 𝐺, since soon average it over 𝒟.)

Hence

⟨𝑍𝑛⟩ = ⟨∫𝑥⃗∼𝑝∗(𝒟)𝑛 exp (− ∑𝑛
𝑎=1 𝐺(𝑥(𝑎), 𝒟)𝑑𝑥)⟩

𝒟
.

Step 3: The Order Parameters

The above expression is an expectation of an integral, and so we can switch the order of summation, and
write it also as

⟨𝑍𝑛⟩ = ∫𝑥⃗∼𝑝∗(𝒟)𝑛 ⟨exp (− ∑𝑛
𝑎=1 𝐺(𝑥(𝑎), 𝒟))⟩𝒟 𝑑𝑥.
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It turns out that for natural energy functions (for example when 𝐻 is quadratic in 𝑥 such as when
it corresponds to Mean Squared Error loss), for any tuple of 𝑥(1), … , 𝑥(𝑛), the expectation over 𝒟 of
exp (−𝛽 ∑𝑛

𝑎=1 𝐻(𝑥(𝑎), 𝒟)) only depends on the angles between the 𝑥(𝑎)’s. That is, rather than depend-
ing on all of these 𝑁 -dimensional vectors, it only depends on the 𝑛2 coefficients 𝑄𝑎𝑏 = 1

𝑁 𝑥(𝑎) ⋅𝑥(𝑏). The 𝑛×𝑛
matrix Q is known as the overlap matrix or order parameters and one can often find a nice analytical
function ℱ whose values are bounded (independently of 𝑁) such that

⟨exp (− ∑𝑛
𝑎=1 𝐺(𝑥(𝑎), 𝒟))⟩𝒟 = exp(−𝑛𝑁ℱ(𝑄)).

Hence we can replace the integral over 𝑥(1), … , 𝑥(𝑛) with an integral over 𝑄 and write

⟨𝑍𝑛⟩ = ∫ 𝑑𝑄 exp (−𝑛𝑁ℱ(𝑄))
where the measure 𝑑𝑄 is the one induced by the overlap distribution of a tuple ⃗𝑥 ∼ 𝑝𝛽(𝒟) taken for a random
choice of the parameters 𝒟.

Since 𝑄 only ranges over a small (𝑛2 dimensional set), at the large 𝑁 limit, the integral is dominated by the
maximum of its integrand (“method of steepest descent” / “saddle point method”). Let 𝑄∗ be the global
minimum of ℱ (within some space of matrices). We have

lim𝑁→∞ ⟨𝑍𝑛⟩ = exp(−𝑛𝑁ℱ(𝑄∗)).
Once we arrive at this expression, the configurational average of − log𝑍 is simply 𝑁ℱ(𝑄∗). These steps
constitute the replica method. The ability to compute the configurational average by creating an appropriate
𝑄 is one of the factors determining whether the replica method can be used. For example, in the supervised
learning example, 𝐻 is almost always assumed to be quadratic in 𝑥; cross-entropy loss, for instance, is
generally not amendable.

� Bad Math Warning: there are three limits, 𝛽 → ∞, 𝑁 → ∞, and 𝑛 → 0. In replica calculations,
we assume that we take take these limits in whichever order that is arithmetically convenient.

IV. Constraints on 𝑄: Replica Symmetry and Replica Symmetry Breaking
Unfortunately, the description of 𝑄 in Step 3 is a gross simplification. 𝑄 cannot be any matrix – it needs to
satisfy particular constraints. In particular, it cannot be a matrix that appears with probability tending to
zero with 𝑁 as the overlap matrix of a tuple of 𝑛 replicas from the Gibbs distribution. Hence, we need to
understand the space of potential matrices 𝑄 that could arise from the probability distribution, and 𝑄∗ is
the global minimum under these constraints.

The most important constraint on 𝑄 is the replica symmetry (RS), or the lack thereof (replica symmetry
breaking, or RSB). Recall that 𝑄 encodes the overlap between {𝑥(𝑎)}, where each element is a Gibbs random
variable. On a high level, the structure of 𝑄 describes the geometry of the Gibbs distribution. An in depth
description of the relationship between the two is beyond the scope of this post (check out Mean Field Models
for Spin Glasses by Michel Talagrand). We will give some intuitions that apply in the zero-temperature limit.

A. What is the symmetry ansatz and when is it a good idea?

The replica symmetric ansatz studies the following special form of 𝑄 matrix

𝑄𝑎𝑏 = (𝑞 − 𝑞0)𝛿𝑎𝑏 + 𝑞0

where 𝛿𝑎𝑏 is the Kroneker delta. In other words, this ansatz corresponds to the guess that if we pick 𝑛
random replicas 𝑥(1), … , 𝑥(𝑛) then they will satisfy that ‖𝑥(𝑎)‖2 ≈ 𝑞 for all 𝑎 = 1, … 𝑛, and 𝑥(𝑎) ⋅ 𝑥(𝑏) ≈ 𝑞0 for
𝑎 ≠ 𝑏. This ansatz is especially natural for problems with unique minimizers for a fixed problem instance
𝒟. In such a problem we might imagine that the 𝑛 replicas are all random vectors that are have the same
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correlation with the true minimizer 𝑥(0) and since they are random and in high dimension, this correlation
explains their correlation with one another (see example below).

What have we done? It is worthwhile to pause and take stock of what we have done here.
We have reduced computing ⟨log𝑍⟩ into finding an expression for ⟨𝑍𝑛⟩ and then reduced this
to computing 𝔼 exp(−𝑛𝑁ℱ(𝑄)) whre the expectation is taken over the induced distribution of
the 𝑛 × 𝑛 overlap matrix. Now for every fixed 𝑛, we reduce the task to optimizing over just
two parameters 𝑞 and 𝑞0. Once we find the matrix 𝑄∗ that optimizes this bound, we obtain the
desired quantity by taking lim𝑛→0

1
𝑛 log exp(−𝑛𝑁ℱ(𝑄∗) = 𝑁ℱ(𝑄∗).

B. An illustration:

Annealed langevin dynamics on a convex and non-convex objective below illustrate how the geometry of the
learning problem influences the structure of the overlap matrix 𝑄.

A convex problem https://www.youtube.com/watch?v=5Ekqn4qNX34

A non-convex problem https://www.youtube.com/watch?v=euyd9z0__YY

We see that even in low-dimensional problems, the structure of the loss landscape influences the resulting
𝑄 matrices. Since the replica method works only in high dimensions, these animations cannot be taken too
seriously as a justification of the symmetry ansatz, but below we discuss in what kinds of models we could
expect the symmetry ansatz to be a good idea.

C. Replica Symmetry in High Dimensions

We will now discuss a simple model where the replica symmetry ansatz is especially natural. For a fixed
problem instance 𝒟, suppose that the 𝑥𝑎 vectors are distributed in a point cloud about some mean vector
𝜇 ∈ ℝ𝑁 .

𝑥𝑎 = 𝜇 + 𝜖𝑎

where 𝜖𝑎 are zero-mean noise independently sampled across different replicas with covariance ⟨𝜖𝑎,𝑖𝜖𝑏,𝑗⟩ =
𝜎2
𝑁 𝛿𝑎𝑏𝛿𝑖𝑗. This is equivalent to stipulating a Gibbs measure with energy 𝛽𝐻(𝑥) = − log 𝑝𝜖(𝑥 − 𝜇) where 𝑝𝜖(⋅)
is the distribution of each noise variable. In this case, the 𝑄 matrix has elements

𝑄𝑎𝑏 = |𝜇|2 + 𝜇⊤𝜖𝑎 + 𝜇⊤𝜖𝑏 + 𝜖⊤
𝑎 𝜖𝑏

By the central limit theorem, these sums of independently sampled random variables are approximately
Gaussian (remember 𝑁 → ∞), so we can estimate how 𝑄 behaves in the large 𝑁 limit

⟨𝑄𝑎𝑏⟩ = |𝜇|2 + 𝜎2𝛿𝑎𝑏 , Var 𝑄𝑎𝑏 = 𝑂(1/𝑁)

This implies that in the thermodynamic 𝑁 → ∞ limit, the 𝑄 matrix concentrates around a replica symmetric
structure. Note that the emergence of this RS structure relied on the fact that high dimensional random
vectors are approximately orthogonal. For many supervised learning problems such as least squares fitting,
this toy model is actually relevant by specifically taking 𝜖 ∼ 𝒩(0, 𝜎2/𝑁).
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V. Example Simple Problem: Learning Curve Phase Transition in Least Squares
Fitting
To show these tools in action we will first study the simplest possible example with that has an interesting
outcome. We will study the generalization performance of ridge regression on Gaussian distributed random
features. In particular we will study a thermodynamic limit where the number of samples 𝑃 and the number
of features 𝑁 are both tending to infinity 𝑃 , 𝑁 → ∞ but with finite ratio 𝛼 = 𝑃/𝑁 . We will observe a
phase transition the point 𝛼 = 1, where the learning problem transitions from over-parameterized (𝑃 < 𝑁)
to under-parameterized (𝑃 > 𝑁). In the presence of noise this leads to an overfitting peak which can be
eliminated through explicit regularization.

A. Some References

Hertz, Krogh, and Thorbergsson first studied this problem and noted the phase transition at 𝛼 = 1. Advani
and Ganguli examine this model as a special case of M-estimation. Analysis of this model can also be obtained
as a special case of kernel regression, for which general learning curves were obtained by Canatar, Bordelon,
and Pehlevan with the replica method. Similar overfitting peaks were recently observed in nonlinear two
layer neural networks by Belkin, Hsu, Ma, and Mandal and modeled with the replica method by d’Ascoli,
Refinetti, Biroli, and, Krzakala allowing them to clarify the two possible types of overfitting peaks in random
feature models. This problem can also be studied with tools from random matrix theory as in the work of
Mei and Montanari and several others.

B. Problem Setup

Our problem instance is a dataset 𝒟 = {(𝑥𝜇, 𝑦𝜇)}𝑃
𝜇=1 with 𝑥𝜇 ∈ ℝ𝑁 drawn i.i.d. from a Gaussian distribution

𝑥𝜇
𝑘 ∼ 𝒩(0, 1/𝑁). The target values 𝑦𝜇 are generated by a noisy linear teacher

𝑦𝜇 =
𝑁

∑
𝑘=1

𝑤∗
𝑘𝑥𝜇

𝑘 + 𝜎𝜖𝜇

where ||𝑤∗||2 = 𝑁 and noise is Gaussian distributed 𝜖𝜇 ∼ 𝒩(0, 1). We will compute, not the generalization
error for a particular problem instance 𝒟, but the average performance over random datasets! The energy
function we study is the ridge regression loss function

𝐻(𝑤, 𝒟) = 1
𝜆

𝑃
∑
𝜇=1

(
𝑁

∑
𝑘=1

𝑤𝑘𝑥𝜇
𝑘 − 𝑦𝜇)

2

+ ∑
𝑘

𝑤2
𝑘

The ridge parameter 𝜆 controls the trade-off between training accuracy and regularization of the weight
vectors. When 𝜆 → 0, the training data are fit perfectly while the 𝜆 → ∞ limit gives 𝑤 = 0 as the minimizer
of 𝐻. The 𝛽 → ∞ limit of the Gibbs distribution corresponds to studying the performance of the ridge
regression solution which minimizes 𝐻. The generalization error is an average over possible test points drawn
from the same distribution

𝐸𝑔 = ⟨(∑
𝑘

(𝑤𝑘 − 𝑤∗
𝑘)𝑥𝑘)

2

⟩
𝑥

= 1
𝑁

𝑁
∑
𝑘=1

(𝑤𝑘 − 𝑤∗
𝑘)2

C. Partition Function

We introduce a partition function for the Gibbs distribution on 𝐻(𝑤, 𝒟)
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𝑍(𝒟) = ∫ 𝑑𝑤 exp(− 𝛽
2𝜆

𝑃
∑
𝜇=1

(𝑤⊤𝑥𝜇 − 𝑦𝜇)2 + 𝛽
2 ||𝑤||2) .

D. Replicated Partition Function

We can rewrite the integral through a simple change of variables Δ = 𝑤 − 𝑤∗ since 𝑦𝜇 = 𝑤∗⊤𝑥𝜇 + 𝜎𝜖𝜇. Δ
represents the discrepancy between the learned weights 𝑤 and the target weights 𝑤∗. We will now replicate
and average over the training data 𝒟, ie compute ⟨𝑍𝑛⟩.

⟨𝑍(𝒟, 𝐽)𝑛⟩𝒟 = ∫
𝑛

∏
𝑎=1

𝑑Δ𝑎 ⟨exp(− 𝛽
2𝜆

𝑃
∑
𝜇=1

𝑛
∑
𝑎=1

(Δ𝑎 ⋅ 𝑥𝜇 − 𝜎𝜖𝜇)2 − 𝛽
2

𝑛
∑
𝑎=1

||Δ𝑎 + 𝑤∗||2)⟩
𝒟

:warning: Notice that by writing these integrals, we are implicitly assuming that 𝑛 is an integer.
Eventually, we need to take 𝑛 → 0 limit to obtain the generalization error 𝐸𝑔 from ⟨log𝑍⟩. After
computation of ⟨𝑍𝑛⟩ at integer 𝑛, we will get an analytic expression of 𝑛 which we will allow us
to non-rigorously take 𝑛 → 0.

The randomness from the dataset 𝒟 is present in the first term only appears through mean-zero Gaussian
variables 𝛾𝜇

𝑎 = Δ𝑎 ⋅ 𝑥𝜇 − 𝜖𝜇𝜎 which have covariance structure

⟨𝛾𝜇
𝑎 𝛾𝜈

𝑏 ⟩ = 𝛿𝜇𝜈 [ 1
𝑁 Δ𝑎 ⋅ Δ𝑏 + 𝜎2] = 𝛿𝜇𝜈 [𝑄𝑎𝑏 + 𝜎2] ⟹ ⟨𝛾𝛾⊤⟩ = 𝑄 + 𝜎211⊤ ∈ ℝ𝑛×𝑛

where 1 ∈ ℝ𝑛 is the vector of all ones and we introduced overlap order parameters 𝑄𝑎𝑏 defined as

𝑄𝑎𝑏 = 1
𝑁 Δ𝑎 ⋅ Δ𝑏 .

The average over the randomness in the dataset 𝒟 is therefore converted into a routine Gaussian integral.
Exploiting the independence over each data point, we break the average into a product of 𝑃 averages.

⟨exp(− 𝛽
2𝜆 ∑

𝑎,𝜇
(𝛾𝜇

𝑎 )2)⟩
{𝛾𝜇

𝑎 }

= ⟨exp(− 𝛽
2𝜆 ∑

𝑎
𝛾2

𝑎)⟩
𝑃

{𝛾𝑎}

Each average is a multivariate Gaussian integral of the form

∫ 𝑑𝛾1𝑑𝛾2...𝑑𝛾𝑛

√(2𝜋)𝑛 det(𝑄 + 𝜎2𝐼)
exp(−1

2 ∑
𝑎𝑏

𝛾𝑎𝛾𝑏 (𝑄 + 𝜎211⊤)−1
𝑎𝑏 − 𝛽

2𝜆 ∑
𝑎

𝛾2
𝑎) = det(𝐼 + 𝛽

𝜆𝑄 + 𝛽
𝜆𝜎211⊤)

−1/2

This integral can be derived by routine integration of Gaussian functions, which we derive in the Appendix.

E. Enforcing Order Parameter Definition

To enforce the definition of the order parameters, we insert delta-functions into the expression for ⟨𝑍𝑛⟩ which
we write as Fourier integrals over dual order parameters 𝑄̂𝑎𝑏

𝛿(𝑁𝑄𝑎𝑏 − Δ𝑎 ⋅ Δ𝑏) = 1
2𝜋 ∫ 𝑑𝑄̂𝑎𝑏 exp (𝑖𝑄̂𝑎𝑏(𝑁𝑄𝑎𝑏 − Δ𝑎 ⋅ Δ𝑏))
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This trick is routine and is derived in the Appendix of this post.

After integration over 𝒟 and Δ𝑎, we are left with an expression of the form

⟨𝑍𝑛⟩ = ∫ ∏
𝑎𝑏

𝑑𝑄𝑎𝑏 ∏
𝑎𝑏

𝑑𝑄̂𝑎𝑏 exp(−𝑃𝐺𝐸(𝑄) + 𝑖𝑁 ∑
𝑎𝑏

𝑄𝑎𝑏𝑄̂𝑎𝑏 − 𝑁𝐺𝑆(𝑄̂))

where 𝐺𝐸 is a function which arises from the average over 𝛾𝜇
𝑎 and 𝐺𝑆 is calculated through integration over

the Δ𝑎 variables.

:warning: The functions 𝐺𝐸 and 𝐺𝑆 have complicated formulas and we omit them here to focus
on the conceptual steps in the replica method. Interested readers can find explicit expressions
for these functions in the references above.

F. Replica Symmetry

To make progress on the integral above, we will make the replica symmetry assumption, leveraging the fact
that the ridge regression loss is convex and has unique minimizer for 𝜆 > 0. Based on our simulations and
arguments above, we will assume that the 𝑄 and 𝑄̂ matrices satisfy replica symmetry

𝑄𝑎𝑏 = 𝑞𝛿𝑎𝑏 + 𝑞0 , 𝑄̂𝑎𝑏 = ̂𝑞𝛿𝑎𝑏 + ̂𝑞0

G. Saddle Point Equations and Final Result

After the replica symmetry ansatz, the replicated partition function has the form

⟨𝑍𝑛⟩ = ∫ 𝑑𝑞𝑑 ̂𝑞𝑑𝑞0𝑑 ̂𝑞0 exp(−𝑛𝑁ℱ(𝑞, ̂𝑞, 𝑞0, ̂𝑞0))

In the 𝑁 → ∞ limit, this integral is dominated by the order parameters 𝑞, ̂𝑞, 𝑞0, ̂𝑞0 which satisfy the saddle
point equations

𝜕ℱ
𝜕𝑞 = 0 , 𝜕ℱ

𝜕 ̂𝑞 = 0 , 𝜕ℱ
𝜕𝑞0

= 0 , 𝜕ℱ
𝜕 ̂𝑞0

= 0

:warning: Notice that 𝑛 is small (we are working in 𝑛 → 0 limit to study log𝑍) but 𝑁 is large
(we are studying the “thermodynamic” 𝑁 → ∞ limit). The order of taking these limits matters.
It is important that we take 𝑁 → ∞ first before taking 𝑛 → 0 so that, at finite value of 𝑛, the
integral for ⟨𝑍𝑛⟩ is dominated by the saddle point of ℱ.

We can solve the saddle point equations symbolically with Mathematica (see this notebook) in the 𝛽 → ∞
limit. We notice that 𝑄 must scale like 𝑂(1/𝛽) and 𝑄̂ must scale like 𝑂(𝛽). After factoring out the
dependence on the temperature, we can compute the saddle point conditions through partial differentiation.

11

https://www.dropbox.com/s/m0pje9mr0gp0x1n/saddle_point_demo.nb?dl=1


This symbolically gives us the order parameters at the saddle point. For example, the overlap parameter
𝑞 = 1

2 [1−𝜆−𝛼+√(1 − 𝜆 − 𝛼)2 + 4𝜆]. After solving the saddle point equations, the generalization error can
be written entirely in terms of the first order parameter 𝑞 at the saddle point. For replica 𝑎, the generalization
error is merely ||Δ𝑎||2 = ||𝑤𝑎 − 𝑤∗||2 = 𝑄𝑎𝑎 = 𝑞 + 𝑞0. Thus

𝐸𝑔 = 𝑞 + 𝑞0 = (𝑞 + 𝜆)2 + 𝜎2𝛼
(𝑞 + 𝜆 + 𝛼)2 − 𝛼

Where 𝑞 + 𝜆 = 1
2 [1 + 𝜆 − 𝛼 + √(1 + 𝜆 − 𝛼)2 + 4𝜆𝛼] at the saddle point.

H. Noise Free Estimation

When 𝜎2, 𝜆 → 0 the generalization error decreases linearly with 𝛼: 𝐸𝑔 = 1 − 𝛼 for 𝛼 < 1 and 𝐸𝑔 = 0 for
𝛼 > 1. This indicates the target weights are perfectly estimated when the number of samples equals the
number of features 𝑃 → 𝑁 . A finite ridge parameter 𝜆 > 0 increases the generalization error when noise is
zero 𝜎2 = 0. Asymptotically, the generalization error scales like 𝐸𝑔 ∼ 𝜆2

𝛼2 for large 𝛼.
###I. Phase transition and overfitting peaks

In the presence of noise 𝜎2 > 0, the story is different. In this case, the generalization error exhibits a peak
at 𝛼 ≈ 1 + 𝜆 before falling at a rate 𝐸𝑔 ∼ 𝜎2/𝛼 at large 𝛼. In this regime, accurate estimation requires
reducing the variance of the estimator by increasing the number of samples.

In small 𝜆 → 0 limit, the order parameter behaves like 𝑞 + 𝜆 ∼ 1 − 𝛼 for 𝛼 < 1 and 𝑞 + 𝜆 ∼ 𝜆 for 𝛼 > 1.
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The free energy ℱ exhibits a discontinuous first derivative as 𝛼 → 1, a phenomenon known as first-order
phase transition. Let ℱ∗ be the value of the free energy at the saddle point (𝑞∗, ̂𝑞∗, 𝑞∗

0, ̂𝑞∗
0). Then we find

𝜕ℱ∗

𝜕𝛼 ∼ 𝜎2

2𝜆Θ(𝛼 − 1) + 𝒪𝜆(1) , (𝜆 → 0, 𝛼 → 1)

which indicates a discontinous first derivative in the 𝜆 → 0 limit as 𝛼 → 1. We plot this free energy ℱ∗(𝛼)
for varying values of 𝜆, showing that as 𝜆 → 0 a discontinuity in the free energy occurs at 𝛼 → 1. The
non-zero ridge parameter 𝜆 > 0 prevents the strict phase transition at 𝛼 = 1.
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J. Putting it all together

Using the analysis of the saddle point, we are now prepared to construct a full picture of the possibilities. A
figure below from this paper provies all of the major insights. We plot experimental values of generalization
error 𝐸𝑔 in a 𝑁 = 800 dimensional problem to provide a comparison with the replica prediction.
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( a ) When 𝜆 = 0, the generalization error either falls like 1 − 𝛼 if noise is zero, or it exhibits a divergence
at 𝛼 → 1 if noise is non-zero.

( b ) When noise is zero, increasing the explicit ridge 𝜆 increases the generalization error. At large 𝛼, 𝐸𝑔 ∼ 𝜆2
𝛼2 .

( c ) When there is noise, explicit regularization can prevent the overfitting peak and give optimal general-
ization. At large 𝛼, 𝐸𝑔 ∼ 𝜎2

𝛼 .

( d ) In the (𝜆, 𝜎2) plane, there are multiple possibilities for the learning curve 𝐸𝑔(𝛼). Monotonic learning
curves 𝐸′

𝑔(𝛼) < 0 are guaranteed provided 𝜆 is sufficiently large compared to 𝜎2. If regularization is too
small, then two-critical points can exist in the learning curve, ie two values 𝛼∗ where 𝐸′

𝑔(𝛼∗) = 0 (sample
wise double descent). For very large noise, a single local maximum exists in the learning curve 𝐸𝑔(𝛼), which
is followed by monotonic decreasing error.

VI. Example Problem 2: Spiked Matrix Recovery
Detailed calculations can be found in this excellent introduction of the problem by Song Mei.

Suppose we have a 𝑁 -by-𝑁 rank-1 matrix, 𝜆uu𝑇 , where u is a norm-1 column vector constituting the signal
that we would like to recover. The input A we receive is corrupted by symmetric Gaussian i.i.d. noise, i.e.,

A = 𝜆uu𝑇 + W
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where 𝑊𝑖𝑗 = 𝑊𝑗𝑖 ∼ 𝒩(0, 1/𝑁), 𝑊𝑖𝑖 ∼ 𝒩(0, 2/𝑁) (W is drawn from a Gaussian Orthogonal Ensemble). At
large 𝑁 , eigenvalues of W are distributed uniformly on a unit disk in the complex plane. Thus, the best
estimate (which we call v) of u from A is the eigenvector associated with the largest eigenvalue. In other
words

v = arg max
x∈𝕊𝑁−1

x𝑇 Ax.

The observable of interest is how well the estimate, v, matches u, as measured by (v ⋅ u)2. We would like to
know its average over different W.

In the problem setup, 𝜆 is a constant controlling the signal-to-noise ratio. Intuitively, the larger 𝜆
is, the better the estimate should be (when averaged over W). This is indeed true. Remarkably, for
large 𝑁 , v ⋅ u is almost surely 0 for 𝜆 < 1. For 𝜆 ≥ 1, it grows quickly as 1 − 𝜆−2. This discontinu-
ity at 𝜆 = 1 is a phase transition. This dependence on 𝜆 can be derived using the replica method.

In the simulations above, we see two trend with increasing 𝑁 . First, the average curve approaches the theory,
which is good. In addition, trial-to-trial variability (as reflected by the error bars) shrinks. This reflects the
fact that our observable is indeed self-averaging.

Here, we give a brief overview of how the steps of a replica calculation can be set up and carried out.

Step 1

Here, W is the problem parameter (𝒫) that we average over. The minimized function is

𝐻(x, W) = −x𝑇 (𝜆uu𝑇 + W)x = −𝜆(x ⋅ u)2 − x𝑇 Wx.

This energy function already contains a “source term” for our observable of interest. Thus, the vanilla
partition function will be used as the augmented partition function. In addition, this function does not scale
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with 𝑁 . To introduce the appropriate 𝑁 scaling, we add an 𝑁 factor to 𝐻, yielding the partition function

𝑍(W, 𝜆) = ∫
𝕊𝑁−1

𝑑x exp (−𝛽𝑁𝐻(x, W)) .

It follows that (again using angular brackets to denote average over W)

⟨(x ⋅ u)2⟩ = 1
𝛽𝑁

𝑑
𝑑𝜆⟨log𝑍(W, 𝜆)⟩∣

𝜆=0
.

Since we are ultimately interested in this observable for the best estimate, v, at the large 𝑁 , limit, we seek
to compute

lim
𝑁→∞

𝔼[(v ⋅ u)2] = lim
𝑁→∞

lim
𝛽→∞

1
𝛽𝑁

𝑑
𝑑𝜆⟨log𝑍(W, 𝜆)⟩.

Why don’t we evaluate the derivative only at 𝜆 = 0? Because 𝜆(x ⋅ u)2 is not a source term that we
introduced. Another way to think about it is that this result needs to be a function of 𝜆, so of course we
don’t just evaluate it at one value.

Step 2

Per the replica trick, we need to compute

⟨𝑍𝑛⟩ = ⟨
𝑛

∏
𝑎=1

(∫ 𝐷x(𝑎)) exp(𝛽𝑁
𝑛

∑
𝑎=1

𝜆(x(𝑎) ⋅ u)2 + x(𝑎)𝑇 Wx(𝑎))⟩ (1)

= ∫ 𝐷W
𝑛

∏
𝑎=1

(∫ 𝐷x(𝑎)) exp(𝛽𝑁
𝑛

∑
𝑎=1

𝜆(x(𝑎) ⋅ u)2 + x(𝑎)𝑇 Wx(𝑎)) . (2)

:warning: Hereafter, our use of “⟨𝑍𝑛⟩ =” is loose. When performing integrals, we will ignore
the constants generated and only focus on getting the exponent right. This is because we will
eventually take log of ⟨𝑍𝑛⟩ and take the derivative w.r.t. 𝜆. A constant in 𝜆 in front of the integral
expression for ⟨𝑍𝑛⟩ does not affect this integral. This is often the case in replica calculations.

where 𝐷x is a uniform measure on 𝕊𝑁−1 and 𝐷W is the probability measure for W, as described above.

We will not carry out the calculation in detail in this note as the details are problem-specific. But the overall
workflow is rather typical of replica calculations:

1. Integrate over W. This can be done by writing W as the sum of a Gaussian i.i.d. matrix with its own
transpose. The integral is then over the i.i.d. matrix and thus a standard Gaussian integral. After this
step, we obtain an expression that no longer contains W,a major simplification.

2. Introduce the order parameter Q. After the last integral, the exponent only depends on x(𝑎) through
u ⋅ x(𝑎) and x(a) ⋅ x(b). These dot products can be described by a matrix Q ∈ ℝ𝑁+1×𝑁+1, where we
define 𝑄0,𝑎 = 𝑄𝑎,0 = u ⋅ x(𝑎) and 𝑄𝑎≥1,𝑏≥1 = x(𝑎) ⋅ x(𝑏).

3. Replace the integral over x with one over Q. A major inconvenience of the integral over x is that it
is not over the entire real space but over a hypersphere. However, we can demand x(𝑎) ∈ 𝕊𝑁−1 by
requiring 𝑄𝑎𝑎 = 1. Now, we rewrite the exponent in terms of Q and integrate over Q instead, but we
add many Dirac delta functions to enforce the definition of Q. We get an expression in the form

⟨𝑍𝑛⟩ = ∫ 𝑑Q exp(𝑓(𝑄))
𝑁

∏
𝑖=1

𝛿(u ⋅ x(𝑖) − 𝑄0𝑖) ∏
1≤𝑖≤𝑗≤𝑁

𝛿(x(𝑗)𝑢 ⋅ x(𝑖) − 𝑄𝑗𝑖).
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4. After some involved simplifications, we have

⟨𝑍𝑛⟩ = ∫ 𝑑Q exp(𝑁𝑔(Q) + 𝐶)

where 𝐶 does not depend on Q and 𝑔(Q) is 𝑂(1). By the saddle point method,

⟨𝑍𝑛⟩ = max
Q

exp(𝑁𝑔(Q)),

where Q needs to satisfy the various constraints we proposed (e.g., its diagonal is all 1 and it is
symmetric).

Step 3

The optimization over Q is not trivial. Hence, we make some guesses about the structure of Q∗, which
maximizes the exponent. This is where the replica symmetry (RS) ansatz comes in. Since the indices of x(𝑎)

are arbitrary, one guess is that for all 𝑎, 𝑏 ≥ 1 𝑄𝑎≠𝑏 has the same value ,𝑞. In addition, for all 𝑎, 𝑄0,𝑎 = 𝜇.
This is the RS ansatz – it assumes an equivalency between replicas. Rigorously showing whether this is
indeed the case is challenging, but we can proceed with this assumption and see if the results are correct.

The maximization of 𝑔(Q) is now over two scalars, 𝜇 and 𝑞. Writing the maximum as 𝜇∗, 𝑞∗ and using the
replica identity

⟨log𝑍⟩ = lim
𝑛→0

log⟨𝑍𝑛⟩/𝑛 = lim
𝑛→0

𝑁𝑔(𝜇∗, 𝑞∗).

Setting the derivative of 𝑔 w.r.t. them to zero yields two solutions. >:warning: Bad Math Warning: Max-
imizing 𝑔 w.r.t. 𝜇, 𝑞 requires checking that the solutions are indeed global minima, a laborious effort that
has done for some models. We will assume them to be global minima.

For each solution, we can compute lim𝑁→∞ lim𝛽→∞
1

𝛽𝑁 ⟨log𝑍⟩, which will become what we are looking for
after being differentiated w.r.t. 𝜆. We obtain an expression of ⟨log𝑍⟩. The two solutions yield ⟨log𝑍⟩ =
𝜆 + 1/𝜆 and ⟨log𝑍⟩ = 2, respectively. Differentiating each w.r.t. 𝜆 to get ⟨(𝑣 ⋅ 𝑢)2⟩, we have 1 − 𝜆−2 and 0.

Which one is correct? We decide by checking whether the solutions (black line and blue line above) are
sensible (“physical”). It can be verified that lim𝑁→∞ lim𝛽→∞

1
𝛽𝑁 ⟨log𝑍⟩ = ⟨𝜆max⟩, which is the largest
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eigenvalue of A. Clearly, it should be non-decreasing as a function of 𝜆. Thus, for 𝜆 ≤ 1, we choose the 0
solution, and for 𝜆 ≥ 1 the 𝜆 + 1/𝜆 solution. Thus, ⟨(𝑣 ⋅ 𝑢)2⟩ is 0 and 1 − 𝜆−2 in the two regimes, respectively.

Appendix: Gaussian Integrals and Delta Function Representation
We frequently encounter Gaussian integrals when using the replica method and it is often convenient to rely
on basic integration results which we provide in this Appendix.

Single Variable The simplest Gaussian integral is the following one dimensional integral

𝐼(𝑎) = ∫
∞

−∞
exp(−𝑎

2𝑥2) 𝑑𝑥

We can calculate the square of this quantity by changing to polar coordinates 𝑥 = 𝑟 cos𝜙, 𝑦 = 𝑟 sin𝜙

𝐼(𝑎)2 = ∫
ℝ2

exp(−𝑎
2 (𝑥2 + 𝑦2)) 𝑑𝑥𝑑𝑦 = ∫

2𝜋

0
𝑑𝜙 ∫

∞

0
𝑟 exp(−𝑎

2𝑟2) 𝑑𝑟 = 2𝜋𝑎−1

We thus conclude that 𝐼(𝑎) = √2𝜋/𝑎. Thus we find that the function √ 𝑎
2𝜋 𝑒− 𝑎

2 𝑥2 is a normalized function
over (−∞, ∞). This integral can also be calculated with Mathematica or Sympy. Below is the result in
Sympy.

from sympy import *
from sympy.abc import a, b, x, y
x = Symbol('x')
integrate( exp( -a/2 * x**2 ) , (x, -oo,oo))

This agrees with our result since we were implicitly assuming 𝑎 real and positive (arg 𝑎 = 0).
We can generalize this result to accomodate slightly more involved integrals which contain both quadratic
and linear terms in the exponent. This exercise reduces to the previous case through simple completion of
the square

𝐼(𝑎, 𝑏) = ∫
∞

−∞
exp(−𝑎

2𝑥2 ± 𝑏𝑥) 𝑑𝑥 = exp( 𝑏2

2𝑎) ∫
∞

−∞
exp(−𝑎

2 [𝑥 ∓ 𝑏
𝑎]

2
) 𝑑𝑥 = exp( 𝑏2

2𝑎) √2𝜋/𝑎

We can turn this equality around to find an expression

exp( 𝑏2

2𝑎) = √ 𝑎
2𝜋 ∫ exp(−𝑎

2𝑥2 ± 𝑏𝑥) 𝑑𝑥
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Viewed in this way, this formula allows one to transform a term quadratic in 𝑏 in the exponential function
into an integral involving a term linear in 𝑏. This is known as the Hubbard-Stratanovich transformation.
Taking 𝑏 be imaginary (𝑏 = 𝑖𝑘 for real 𝑘), we find an alternative expression of a Gaussian function

exp(− 𝑘2

2𝑎) = √ 𝑎
2𝜋 ∫ exp(−𝑎

2𝑥2 ± 𝑖𝑘𝑥) 𝑑𝑥

Delta Function Integral Representation A delta function 𝛿(𝑧) can be considered as a limit of a
normalized mean-zero Gaussian function with variance taken to zero

𝛿(𝑧) = lim
𝑎→0

√ 1
2𝜋𝑎 exp(− 1

2𝑎𝑧2)

We can now use the Hubbard-Stratanovich trick to rewrite the Gaussian function

exp(− 1
2𝑎𝑧2) = √ 𝑎

2𝜋 ∫ exp(−𝑎
2𝑥2 ± 𝑖𝑧𝑥) 𝑑𝑥

Thus we can relate the delta function to an integral

𝛿(𝑧) = lim
𝑎→0

1
2𝜋 ∫ exp(−𝑎

2𝑥2 ± 𝑖𝑥𝑧) 𝑑𝑥 = 1
2𝜋 ∫ exp (±𝑖𝑥𝑧) 𝑑𝑥

This trick is routinely utilized to represent delta functions with integrals over exponential functions during
a replica calculation. In particular, this identity is often used to enforce defintions of the order parameters
𝑄𝑎𝑏 in the problem. For example, in the least squares problem where 𝑄𝑎𝑏 = 1

𝑁 Δ𝑎 ⋅ Δ𝑏 we used

𝛿(𝑁𝑄𝑎𝑏 − Δ𝑎 ⋅ Δ𝑏) = 1
2𝜋 ∫ 𝑑𝑄̂𝑎𝑏 exp (𝑖𝑁𝑄𝑎𝑏𝑄̂𝑎𝑏 − 𝑖𝑄̂𝑎𝑏Δ𝑎 ⋅ Δ𝑏)

Multivariate Gaussian integrals We commonly encounter integrals of the following form

𝐼(𝑀) = ∫
ℝ𝑛

exp(−1
2 ∑

𝑎𝑏
𝑀𝑎𝑏𝑥𝑎𝑥𝑏) 𝑑𝑥1𝑑𝑥2...𝑑𝑥𝑛

where matrix 𝑀𝑎𝑏 is symmetric and positive definite. An example is the data average in the least squares
problem studied in this blog post where 𝑀 = (𝑄 + 𝜎211⊤)−1 + 𝛽𝐼 . We can reduce this to a collection of one
dimensional problems by computing the eigendecomposition of 𝑀 = ∑𝜌 𝜆𝜌𝑢𝜌𝑢⊤

𝜌 . From this decomposition,
we introduce variables

𝑧𝜌 =
𝑛

∑
𝑎=1

𝑢𝜌,𝑎𝑥𝑎

The transformation from 𝑥 to 𝑧 is orthogonal so the determinant of the Jacobian has absolute value one.
After changing variables, we therefore obtain the following decoupled integrals

𝐼(𝑀) = ∫
ℝ𝑛

exp(−1
2 ∑

𝜌
𝜆𝜌𝑧2

𝜌) 𝑑𝑧1...𝑑𝑧𝑛 =
𝑛

∏
𝜌=1

∫ exp(−𝜆𝜌
2 𝑧2

𝜌) 𝑑𝑧𝜌 =
𝑛

∏
𝜌=1

√2𝜋
𝜆𝜌
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Using the fact that the determinant is the product of eigenvalues det𝑀 = ∏𝜌 𝜆𝜌, we have the following
expression for the multivariate Gaussian integral

𝐼(𝑀) = (2𝜋)𝑛/2 det (𝑀)−1/2

.
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