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Abstract

In a recent paper [KMS18] proved a certain combinatorial hypothesis, which completed the proof of
(the imperfect completeness variant of) Khot’s 2-to-2 games conjecture (based on an approach initiated
by [KMS17]). This was a major step towards proving the unique games conjecture and the strongest
evidence we have that the UGC is true.

The proof is obtained by combining the following results. In [DKK+16] the authors had reduced the
2-to-2 games conjecture to a certain hypothesis about an agreeement test on the Grassman graph. Later,
[BKS18] proved that a so called “inverse short code conjecture” on the short code graphs [BGH+15]
implies the Grassman agreement hypothesis of [DKK+16]. Finally, [KMS18] (building on techniques in
[DKK+17]) proved the latter “inverse short code conjecture” thus completing the proof of the 2-to-2
games conjecture.

In these notes we provide an exposition of why the inverse short code conjecture implies the 2-2 games
conjecture, without going into Grassman graphs. Assuming the inverse short code conjecture, our goal
is to reduce (a variant of) smooth label cover, which is known to be NP-hard to 2-1 games thus proving
its NP-hardness. In this first version of the notes though, we will only reduce from unique games to
unique games over shorter alphabet size. In the next version, we will generalize the above to reduce from
smooth label cover.

∗These are notes from Boaz Barak’s Feb 23rd and March 2nd 2018 talks at CMSA. Scribes: Mitali Bafna, Chi-Ning Chou,
and Zhao Song.
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1 Preliminaries

In this section, we provide some background for understanding the whole proof. We decided to give a
complete overview of this topic instead of going to the details immediately and hopefully can let the reader
have a better big picture of what is going on.

1.1 Notations

Let us put some notations here without explanation. Things will become clearer and clearer and please refer
to here when you feel confused.

• Parameters: Numbers of variables n,m ≥ 1. The length of the original alphabet size D ≥ 1. The log1

of the alphabet ratio d. The length of the reduced alphabet size ` ≥ 1. Soundness of the original game
ε ∈ (0, 1) and soundness of the reduced game δ ∈ (0, 1). The dimension of monochromatic set r ≥ 1.
The goodness of monochromatic set τ ∈ [0, 1]. See subsection 4.1 for discussion on the relation among
parameters.

• Math objects: F2, Lin(n, `) is the set of all possible linear function from Fn2 to F`2. A(D, `) is the set of
all affine functions from FD2 to F`2. R1(D, `) is the set of all rank one linear functions from FD2 to F`2.
Concretely, for any e ∈ R1(D, `), there exists e′ ∈ F`×D2 rank one such that e(x) = e′x for any x ∈ FD2 .

• For v ∈ A(D, `), [v] is the canonical representation of v under invertible affine transformation.

• Label-Cover related: I is CSP instance, X = {xi}, Y = {yj} are variable sets, ΣBig,ΣSmall are
alphabet sets, and Π = {fi,j} is a collection of constraints. P1, P2 are provers and V is the verifier in
the game view.

1.2 Definitions

Let us start with the definition of constraint satisfaction problem (CSP).

Definition 1.1 (CSP). A constraint satisfaction problem (CSP) instance I = (X,Σ,Π) is given by a
variable set X, an alphabet set Σ, and a collection of constraints Π where π : Σ|X| → {0, 1} for each π ∈ Π.
Let c : X → Σ be a assignment (or coloring) for I, we define its value to be val(c) = Eπ∼Π[π(c(X))]. Define
the value of I to be the maximum over all possible assignment, i.e., val(I) = maxc val(c). We say that I is
satisfiable if val(I) = 1. ♦

Many familiar computational problems can be formulated into the form of CSP, e.g., 3SAT, 3Lin,
MaxCut, etc. Note that CSP and many of its special cases are NP-hard. As a result, a natural question
is to study in CSP is the approximation. This needs the definition of Gap-CSPdefined as follows.

Definition 1.2 (Gap-CSP). Let 0 ≤ s < c ≤ 1. The (c, s)-Gap-CSP problem is to determine, given a
CSP instance I whether :

• val(I) ≥ c, in which case we say I is a YES instance of (c, s)-Gap-CSP.

• val(I) ≤ s, in which case we say I is a NO instance of (c, s)-Gap-CSP.

Here, c refers to completeness and s refers to soundness. ♦

It turns out that many special cases of Gap-CSP are also NP-hard. For instance, H̊astad [H̊as01]
showed that (1, 7/8 + o(1))-Gap-3SAT is NP-hard, which is tight in the sense that there is an efficient
greedy algorithm for (1, 7/8)-Gap-3SAT.

However, many of the special cases of CSP do not have tight approximation results. For example,
Goemans and Williamson [GW95] designed a polynomial time algorithm2 for (1, 0.878)-Gap-MaxCut while

1Sometimes we use d directly as the alphabet ratio. It should be clear depending on the context.
2This algorithm is a SDP-based algorithm and can be formulated as degree-2 Sum-of-Squares algorithm.
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the best known NP-hardness result is for (1, 0.941)-Gap-MaxCut. See Figure 2 in [Kho10] for more
examples. Nevertheless, in a seminal paper [Kho02], Khot identified an important special case of Gap-CSP:
the Unique-Games, in which the approximation results of many special cases of CSP become tight if
(1−o(1), δ)-Gap-Unique-Games is NP-hard. Khot then conjectured (1−o(1), δ)-Gap-Unique-Games to
be NP-hard and this has been known as the Unique Games Conjecture (UGC).

After motivating the study of Unique-Games, let us wrap up this subsection by its formal definition.
Unique-Games is a special case of Label-Cover, which is also a special case of CSP defined as follows

Definition 1.3 (Label-Cover). A Label-Cover instance is a CSP instance (X,Y,ΣBig,ΣSmall,Π) where
X = {xi}i∈[n], Y = {yj}j∈[m] are variable sets, ΣBig,ΣSmall are the corresponding alphabet sets, and Π
contains constraints of the form yi = fi,j(xi). We say it is a d-to-1 Games if all the constraints are d-to-1
and thus |ΣBig| = d · |ΣSmall|. Specifically, if d = 1, we call it Unique Games. ♦

1.3 Historical background

H̊astad [H̊as01] gave optimal inapproximability results for various problems, such as 3LIN, 3SAT and Clique.
One of their main results was showing that approximating the Label-Cover is hard which was the starting
point of many hardness of approximation results, including our trial of proving d-to-1 games conjecture.

Theorem 1.4 (H̊astad [H̊as01]). For every δ > 0 there is some d, ΣBig,ΣSmall, such that it is NP-hard to
distinguish between a d to 1 game over these alphabets with value 1 (completeness) and value ≤ δ (soundness).

Moreover, Moshkovitz and Raz [H̊as01] showed that the reduction can be made to have quasilinear blowup
(e.g. n1+o(1)) which implies that under the exponential time hypothesis (ETH), for every ε > 0, there is no

algorithm with running time 2n
1−ε

to approximate 1 vs δ d-to-1 games.
In the above though, the ratio between the sizes of the alphabet sets was allowed to depend on the

soundness parameter, specifically, d(δ) ≈ 2poly(1/δ). Khot conjectured that the label cover problem is not
only hard for large enough d, but for every d and every δ the above is true. The d-to-1 conjecture is as
follows,

Conjecture 1.5 (Khot [Kho02]). For any d > 1, the d-to-1 Conjecture states that for any δ > 0, the (1, δ)-
Gap-d-to-1-Games is NP-hard when the alphabet set is large enough3. When d = 1, the Unique Games
Conjecture states that for any δ > 0, the (1− δ, δ)-Gap-Unique-Games is NP-hard when the alphabet set
is large enough.

Note on perfect completeness. Khot phrased the d-to-1 conjecture with perfect completeness for d > 1.
However, in this paper we would consider the slightly weaker imperfect completeness variant. For the case
d = 1 (i.e., unique games), imperfect completeness is essential for hardness, as there is a polynomial-
time algorithm in the perfect completeness case. Moreover, looking ahead, in these notes we will be only
interested in d to 1 games with affine constraints, in which case the Gaussian elimination algorithm shows
that imperfect completeness is essential for hardness regardless of d. In particular, we will use the (known)
variant of Theorem 1.4 where the constraints are affine and the completeness parameter is ≥ 1− δ.

On the algorithmic side, [ABS10] gave a sub-exponential Sum-of-Squares algorithm for approximating the
d-to-1 problem. (Specifically, [ABS10] gave an algorithm for the unique games problem, while Steurer [Ste10]
analyzed the same algorithm for the d-to-1 games as well.)

Theorem 1.6 (Arora-Barak-Steurer [ABS10], Steurer [Ste10]). For every d ≥ 1 and δ > 0 there exist a

constant c > 0 and an algorithm that runs in time 2n
O(dnβ(d,c,δ)) for (c, δ)-Gap-d-to-1-Games where for every

fixed c and d, β(d, c, δ) tends to zero as δ tends to zero.4

The consequences of Theorem 1.6 and Conjecture 1.5 are very interesting in the following way. (i)
intermediate complexity (ii) necessary blowup in gadget reduction.

3The large enough here only depends on δ and d but not on n.
4Specifically, for every fixed d and c, β(d, c, δ) = O(1/ poly log(1/δ)). For the case d = 1 and c = 1 − η, β(1, 1 − η, δ) =

poly(η)/ poly log(1/δ).
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Intermediate complexity If Conjecture 1.5 is true for some d, then modulo our belief in P 6= NP, there
is no polynomial time algorithm for d-to-1 Games problem and in fact under the ETH the best running time

for this problem is at least 2n
β

for some β > 0. However, Theorem 1.6 provided a sub-exponential time
algorithm for d-to-1 Games. That is, modulo d-to-1 Games conjecture and P 6= NP, there is a constraint
satisfaction problem whose optimal algorithm runs strictly between polynomial time and exponential time!
This is quite surprising as a priori one might have expected that CSP’s have a ”threshold” or ”zero one
law” type of behavior where for some approximation ratio the running time is polynomial and for others the
running time is 2Ω(n). For example, a consequence of the ETH and the (now proven) dichotomy conjecture,
this is the behavior of the exact solvability problem for all CSP’s. See Figure 1 and Boaz’s blog post for
more details in intermediate complexity.

0 δ

UG threshold

δ
NP threshold

c = 0.99

1

2n
ξ

0

Time

Soundness

Figure 1: A qualitative schematic of the running time (in log of exponent scale) as a function of approximation quality for
(c, δ)-Gap-d-to-1-Games. Think of the case that c is some constant such as 0.99 or even 0.49 and we vary the soundness
parameter δ. A priori one might have thought that there would be a threshold δ∗, such that (c, δ)-Gap-d-to-1-Games would be

solvable in polynomial time for δ < δ∗ and would require 2Ω̃(n) time for δ > δ∗. However under the ETH, combining the proof
of the 2 to 2 conjecture with the [ABS10] algorithm we see that there are actually two thresholds 0 < δ < δ < 1. For δ < δ

the problem is solvable in polynomial time, for δ > δ the problem requires exponential (i.e. 2Ω̃(n) time), while for δ ∈ (δ, δ)

the problem is solvable in time 2n
ξ(δ)

for some ξ(δ) that is strictly between 0 and 1. The unique games conjecture precisely
predicts the value of δ, but the value of δ and the shape of ξ(δ) are not known.

Necessary blowup in gadget reduction The famous Exponential Time Hypothesis (ETH [IP01] and
its stronger version Strong Exponential Time Hypothesis (SETH) [IPZ01] conjecture that any deterministic
algorithm for SAT requires exponential time. If we believe ETH or even SETH are true, then Theorem 1.6
implies that one cannot hope for gadget reduction from standard label cover to Unique-Games with only
linear blowup. Otherwise, it would yield a sub-exponential algorithm for SAT, which contradicts to ETH
and SETH. We summarize this consequence in the following corollary.

Corollary 1.7. Theorem 1.6 implies that d-to-1 conjecture cannot be proven via gadget reduction from
standard hardness result of Label-Cover such as Theorem 1.4.

1.4 Three views of Label-Cover

In this subsection, we are going to introduce the three views of Label-Coverfor future usage and building
intuition. The three views are the CSP view, the game view, and the graph view.

CSP view The CSP view of Label-Cover is basically the same as what we defined in Definition 1.1
and Definition 1.3.
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Game view Label-Cover can also be viewed as a 2-Prover-1-Round game [Kho02] as follows. Let
I = (X,Y,ΣBig,ΣSmall,Π) be a Label-Cover instance. We can play it in the following two-prover one-
round game. Let P1, P2 be two provers without communication5 and V be the verifier. Given the Label-
Cover instance I, the verifier uniformly sample a constraint fi,j ∈ Π and send xi to P1, yj to P2. The provers
then send x̃i ∈ ΣBig and ỹj ∈ ΣSmall to V . Finally, V output 1 if and only if ỹj = fi,j(x̃i). See Figure 2.

Note that the probability of V to output 1 is equal to the val(C) and the proof is left as an exercise.

Figure 2: The game view of Label-Cover.

Graph view Given a Label-Cover instance I, one can define its constraint graph by treating each
variable as vertex and and two vertices have an edge if and only if there is a constraint on the corresponding
variables. Note that the constraint graph of Label-Cover instance is a bipartite graph. An assignment for
the variables corresponds to a coloring of the constraint graph. The edge is then thought of as the constraint
on the coloring of the two vertices. See Figure 3.

Figure 3: The graph view of Label-Cover. The provers is supposed to send the value of xi and yi back to
the verifier.

Now we have enough background to understand the reduction and prove the NP-hardness of 2-1 games!

2 Reduction

Now, it is time for hardness reduction. Let us start with an overview of the reduction from the very beginning
of the story. The starting point is the well-known NP-hard problem SAT. In [H̊as01], SAT is reduced to

5Nevertheless, they might share some randomness before the game starts though this can be shown not to matter by the
averaging argument.
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3XOR with completeness 1 − o(1) and 1/2 + o(1). By some folklore6, it can then be reduced to Label-
Cover with some smoothness property that is going to be useful in the future. Finally, our goal is to reduce
Label-Cover to Unique-Games with completeness 1/2 − o(1) and soundness δ for arbitrary δ > 0. The
final step was done by [DKK+16] and [BKS18] modulo certain combinatorial theorem proved in [KMS18].7

The following is a summary of the road map though here we only focus on the last step.

SAT
[H̊as01]
=====⇒ 3XOR1−o(1), 12 +o(1)

Smooth
Tensoring
======⇒ LC

[DKK+16]

[BKS18]
========⇒ UG 1

2−o(1),δ.

Specifically, the last step from Label-Cover to Unique-Games had been shown in the following way.
Dinur et. al. [DKK+16] first reduced Label-Cover to the 2-to-2 games with completeness 1 − o(1) and
soundness δ modulo the so called Grassman test conjecture. Then, the reduction to Unique-Games with
completeness 1/2−o(1) and soundness δ is then due to some standard connection between 2-to-2 games and
Unique-Games. In these notes, our goal is to directly reduce Label-Cover to Unique-Games.

Label-Cover

DDK+16

2-to-2 Games1−o(1),δ

Standard

Unique-Games 1
2−o(1),δ

Our goal

Figure 4: The game view of PCP composition paradigm.

Affine label cover. Starting from now, we are given Label-Cover instance I with constraints {yj =
fi,j(xi)} where each fi,j is an affine map from FD2 to FD−d2 . That is, we are considering a 2d-to-1 game.
We know that it is NP-hard to distinguish between val(I) ≥ 1 − o(1) and val(I) ≤ δ where δ → 0 when
d→∞. Our goal here is to transform I into Unique-Games instance with constraints {ỹj = gi,j(x̃i)} where
gi,j : F`2 → F`2. The hardness we are aiming for is completeness 1/2− o(1) and soundness δ for arbitrary δ.

S It is a good time for the reader to stop here and make sure
understanding what we have and what we want.

Before we formally introduce the reduction, which in fact can be written within five lines, let us digress
to the standard PCP composition paradigm and motivate the reduction. For those who are familiar with
PCP composition paradigm, you can jump to the code concatenation part.

6Boaz will probably cover this in the second lecture.
7This is not a chronological discussion. The first paper to introduce the ideas of using the Grassman graph in this context

was [KMS17]. [DKK+16] used these ideas to give a proof of the 2 to 2 conjecture modulo a combinatorial hypothesis on
the soundness of an agreement test on the Grassman graph, and [DKK+17] gave preliminary results on the expansion on the
Grassman graph. Then [BKS18] showed that an inverse expansion hypothesis on either the Grassman or Short code graph will
imply the hypothesis of [DKK+16], hence completing the proof of the 2 to 2 conjecture. Finally, [KMS18] proved the inverse
expansion hypothesis for both the short code and Grassman graphs.
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2.1 PCP composition paradigm for Label-Cover

Label-Cover has been used in many hardness of approximation results and most of them follow the
standard PCP composition paradigm explained as follows. This paradigm is also called code concatenation
or alphabet reduction in the literature. In the following, we introduce a special case of PCP composition
paradigm in order to motivate the our reduction. For the interested readers, please refer to classic papers
such as [H̊as01] or survey [Kho10].

Given a Label-Cover instance I with alphabet set8 Σ. Let E : Σ → Σ`target be an error-correcting
code (ECC) mapping from the original alphabet set Σ to a length-` string of elements in the new alphabet
set Σtarget. For each assignment x ∈ Σ to a variable in the original instance I, we map it to E(x). For
each constraint yj = fi,j(xi) in the original instance I, we map it to a collection of constraints in the form
{ỹj,v = gi,j,u,v(x̃i,u)} where (i) x̃i,u is supposed to be E(xi) (resp. ỹj is supposed to be E(yj)), (ii) u, v ∈ [`]
are the coordinate of E(xi) and E(yj) respectively, and (iii) g is a function from Σtarget to Σtarget. To get
more feeling about the PCP composition paradigm described above, let’s illustrate it in the three different
views introduced before.

CSP view What we described above is exactly the CSP view of PCP composition paradigm. See Table 1
for a comparison of the original CSP and the new CSP.

Original CSP New CSP
Variable sets {xi} and {yj} {x̃i,u} (= E(xi)u)

{ỹj,v} (= E(yj)v)
Alphabet set Σ Σ`target

Constrains yj = fi,j(xi) ỹj,v = gi,j,u,v(x̃i,u)

Table 1: CSP view of PCP composition paradigm.

Game view Recall that the original game view is in Figure 2. In the 2-Prover-1-Round game for the new
instance, the verifier first sample i ∼ j as usual. Then, she samples u, v ∈ [`], which are coordinates of the
encodings E(xi) and E(yj). The provers receive queries (i, u) and (j, v) respectively and are supposed to
return E(xi)u and E(yj)v. See Figure 5

Figure 5: The game view of PCP composition paradigm.

Note that the difference between the original game and here is that the provers here can cheat in the sense
that his corresponding strategy does not correspond to a valid encoding. Concretely, denote the responding
strategy of prover 1 as F : [n]× [`]→ Σtarget. On query (i, u) ∈ [n]× [`], F (i, u) is supposed to be E(xi)u for

8For convenience, here we think of the two alphabet sets are the same.
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some xi ∈ Σ. However, it could be the case that when we fix an i ∈ [n], {F (i, u)}u∈[`] does not correspond
to a valid encoding of E. This kind of malicious prover makes the soundness analysis of PCP composition
paradigm non-trivial.

Graph view Recall that the original graph view is in Figure 3. In the constraint graph of the new instance,
each vertex in the original graph becomes a cloud of vertices. For each i ∈ [n], the ith cloud contains ` vertices
indexed by xi,u for some u ∈ [`]. Each constraint gi,j,u,v is associated with an edge between xi,u and yj,v.
The colors for each vertex is now from the alphabet set Σtarget. See Figure 6.

Figure 6: The graph view of PCP composition paradigm.

Apart from the three views illustrated above, another way to view the PCP composition paradigm is
from the perspective of coding theory. This is the reason why sometimes people also call PCP composition
paradigm code concatenation.

S Make sure you understand the PCP composition paradigm
before you move on.

Code concatenation Code concatenation is a standard technique used in the construction of PCPs to
reduce a large alphabet to a smaller one. If we have a PCP over the alphabet Σ, we encode the symbols of
Σ using an error correcting code over a smaller alphabet size, i.e. E : Σ → ΣLSmall. This code is chosen in
such a way that it plays well with the functions computed by the verifier. For example, each coordinate in
the encoding E(xi) corresponds to an evaluation of an affine function on xi. Table 2 lists some important
codes used in the PCP literature.

Code ΣSmall Length Encoding

Long Code F2 22O(D)

Every function

Short Code F2 2O(D2) Affine functions
Hadamard F2 2D Affine functions

`-tensored Hadamard or
unbalanced short code

F`2 2O(`D) Affine functions

Table 2: Some common codes that have been used in code concatenation. The last one is the code we are
going to use.
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The code we will use is the `-tensored Hadamard code, a.k.a. the unbalanced short code, defined as
follows. Let the original alphabet set to be FD2 . The encoding function E maps each symbol in FD2 to a
string over the alphabet F`2 where `� D. That is, E decreases the size of the alphabet sets. As to the length
of the codeword E(x), here E(x) has |A(D, `)| ≈ 2`D+` coordinates where each coordinate corresponds to an
affine function u : FD2 → F`2. Recall that A(D, `) contains all affine function from FD2 to F`2. Finally, for each
x ∈ FD2 and u ∈ A(D, `), E(x)u is naturally defined as u(x). Note that ` = 1 gives us the usual Hadamard
code and hence this is just an `-tensored Hadamard code if we ignore folding9. See Figure 7.

Figure 7: The `-tensored Hadamard code without folding.

We need to have an explicit description for each affine function u ∈ A(D, `) so that the encoding can
be efficiently used in our reduction. The simplest way is viewing u as a matrix Au ∈ F`×D2 and a vector
wu ∈ F`2 such that u(x) = Aux+ wu. Note that the matrix Au is not necessary full-rank10. We call such u
degenerate.

Folding Notice that the codeword E(x) has a lot of redundancies, there are many indices of E that differ
by an invertible function. Concretely, let u ∈ A(D, `) and g : F`2 → F`2 be an invertible affine function. For
a valid codeword E(x), we have that,

E(x)g◦u = g ◦ u(x) = g(E(x)u).

Namely, once we know the value of E(x)v, we know the value of E(x)g◦v. This might not necessarily hold
for an invalid codeword, but nevertheless we would like to impose this condition. It is then natural to define
the equivalence class for u as follows.

[u] = {g ◦ u : g : F`2 → F`2 affine and invertible}.

When we see [u], we think of it as the canonical representation11 of the equivalence class. As a result,
the encoding no longer needs to store the value for every element in A(D, `). Instead, the codeword only
contains the value of elements in [A(D, `)] := {[u] : u ∈ A(D, `)}. Note that even degenerate u, have their
own equivalence class. We do not have to use the folded code: we can also run all our protocols directly on
the unfolded version by appropriately randomizing the verifier’s queries. The folded code though gives us a
simpler analysis.

Finally, we can now defined the `-tensored Hadamard code to be the folded version of the code we
introduced previously. That is, E : FD2 → [A(D, `)] and E(x)[u] = [u](x) for any x ∈ FD2 and [u] ∈ [A(D, `)].

9We will come to folding in a minute
10This is a minor issue as only a very small fraction of the matrices are not full rank. This is actually the main difference

between the Grassman code used in [DKK+16] and the code we are using here. More details will be provided later.
11Canonical representation can be defined as the smallest element in the equivalence class according to some ordering say

lexicographical order.
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V There are two ways to interpret this code. For convenience
of notation, here we use the unfolded version of the code.

• As we did in the previous discussion, treat a coordinate
of E(x) as an affine functions from FD2 to F`2 and E
assigns value to each affine function.

• Think of E as a linear function from E : FD2 → (F`2)2`Da.

Given x ∈ FD2 , the codeword E(x) ∈ (F`2)2`D is indexed
by subspaces of dimension exactly `, where each entry of
E(x) is the restriction of x on an ` dimensional subspace
S. Concretely, let a1, a2, . . . , a` be the canonical basis
for S. Define E(x)S = (〈a1, x〉, 〈a2, x〉, . . . , 〈a`, x〉) ∈
F`2. Note that ` = 1 gives us the usual Hadamard code
and hence this is just an `-tensored Hadamard code.

Note that these two codes are the same modulo the fact that
our code contains even smaller subspaces whereas the first
encoding only consists of ` dimensional subspaces. [DKK+16]
follow the second view whereas we will analyze the first view.

aThe length of the codeword is the number of `-dimension subspaces
in FD

2 . This number is roughly 2`D so we think of it as 2`D here for
simplicity.

Codeword test Suppose one had to test whether a given string E ∈ F2`D

2 is a valid codeword, one natural
test would be choosing two `×D matrices M1,M2 and test whether EM1

+ EM2
= EM1+M2

. This test has
completeness 1 but uses 3 queries, which is undesirable for us. If we were only allowed two queries though,
one possible test would be to choose M1 at random from all `×D matrices, choose M2 at random from the
space of rank-1 ` ×D matrices and check whether EM1

= EM1+M2
. Note that a rank one matrix is of the

form ab>, for some vectors a, b and hence for all x, M2x = ab>x = 0` with probability 1/2. Hence this test
has completeness only 1/2. We will use a similar test for the label cover game with reduced alphabet size.

A final remark about the code concatenation we are using. Because we want to reduce to Unique-Games,
we need to map both ΣBig and ΣSmall to an alphabet set of the same size. Concretely, in the following we
think of ΣBig = FD2 and ΣSmall = FD−d2 where D is a super large constant and d is quite small comparing
to D. Note that here we start from 2d-to-1 Games. To make this a unique game, we will reduce both ΣBig

and ΣSmall to F`2 on both sides, for some `� D− d, to be chosen later. Now, we are ready for the reduction
from 2d-to-1 Games to Unique-Games. We present the reduction in the game view of PCP composition
paradigm.

S Before we move to the protocol, please make sure you un-
derstand what is our goal right now. Especially, make sure
you feel comfortable with PCP composition paradigm and
the game view of the reduction.

11



2.2 Protocol

Recall that a reduction in PCP composition paradigm under game view is basically designing a protocol
with a code E. See Figure 5. In the following, we let ΣBig = FD2 and ΣSmall = FD−d2 and our goal is reducing
a 2d-to-1 instance to a Unique-Games instance.

Let us start with the unfolded version to motivate the usage of the folded version. As described in the
previous section, we replace each symbol xi ∈ FD2 , yj ∈ FD−d2 by its codeword, E(xi), E(yj). The verifier
instead of asking for the value of yj ∈ FD−d2 to Prover 2(P2), asks P2 to give ỹ = E(yj)v which is in F`2,
for a random function v ∈ A(D − d, `). We want to finally check whether yj = fi,j(xi) which implies that
v(yj) = v(fi,j(xi)). If we define u = v ◦ fi,j and ask P1 to give us x̃ = E(xi)u, then for a valid assignment
we would have that x̃ = ỹ and this test would have completeness 1. See Figure 8.

Figure 8: The first protocol without folding.

However, one can immediately come up with a trivial attack for this protocol: both provers always
return 0`. This will give soundness 1, which is meaningless. The way to solve this issue is by folding v
with all functions v′ = gv, for invertible functions g and representing this equivalence class via its canonical
representation [v]. Concretely, the verifier sends [u] and [v] to P1 and P2 respectively and checks whether
v◦[v]−1(ỹ) = u◦[u]−1(x̃). See Figure 9. We note that as an alternative to folding, the verifier can “randomize”
the question by sending v to P1 but sending g ◦ v to P2 for a random invertible affine g : F`2 → F`2. It can
then apply g−1 to P2’s answer before running the test above.

Figure 9: The noiseless protocol with folding.

This test has completeness 1, so have we proved the UGC?! It turns out that there exists an attack
even for the simple instance where the constraints are all an affine function of the type equal to an identity
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plus a shift. Under some mild assumption, one can even show that the attack succeeds with probability 1.
See subsection 2.3 for details. There are two high-level message from the attack. (i) The noiseless protocol
is vulnerable under easy instances. (ii) The attack highly exploits the affine nature of the code.

To circumvent the attack, we use a test like one described in the previous section. Specifically, we let
u = v ◦ fi,j + e, where e is chosen uniformly from R1(D− d, `). Recall that R1(D− d, `) contains all rank 1
affine functions from FD−d2 to F`2. We call this protocol the noisy protocol. See Figure 10.

Figure 10: The noisy protocol.

Here are two observations on the noisy protocol. Firstly, we do not know if the attack is immediately
resolved. So far we just intuitively believe this should work. In fact, if one shows that there is no attack
for the noisy protocol, then he/she proves the soundness of the reduction, which is what we will do in the
upcoming sections. Secondly, this test has completeness half. For any fixed x ∈ FD2 and e sampled from
A(D − d, `), e(x) = 0` with probability 1/2. We have that for a valid assignment that satisfies yj = fij(xi),
the honest response x̃i = [u](xi) and ỹj = [v](yj) satisfy v[v]−1ỹ = vyj = u[u]−1x̃ = uxi with probability
1/2, thus giving us completeness 1/2.

Now we will describe why we need to add the rank one noise by showing an attack on the noiseless
protocol.

2.3 An attack to the noiseless protocol

The attack we are going to present is on a simple case of instances. Before we go into details, let’s summarize
a high-level message we want to emphasize here. Firstly, the noiseless protocol is vulnerable even on simple
instances. This in some sense indicates the fundamental difficult in proving hardness of Unique-Games with
almost complete completeness. Secondly, the power of noise. Though we haven’t shown why the noisy
protocol works, it is of interest from a high-level point of view why adding noise can make the reduction
work.

Now, let’s describe the attack. In the following ,we consider a Unique-Games instance with constraints
of the form I = {yj = xi + σi,j}. Note that with these constraints, the queries [u] and [v] in the noiseless
protocol are actually the same! The reason is that u is actually an affine shift of v and thus they are in the
same equivalence class. Furthermore, we assume that I has the following property,

Assumption. For any subspace Q ⊆ FD2 of co-dimension at least t = 100 log(1/δ), the modified instance
I(Q) = {ΠQ(yj) = ΠQ(xi) + ΠQ(σi,j)} is perfectly satisfiable, i.e., val(I(Q)) = 1. ♦

That is, the assumption guarantees that for each subspace Q of co-dimension large enough, there exists
xQ1 , x

Q
2 , . . . , x

Q
n ∈ FD2 and yQ1 , y

Q
2 , . . . , y

Q
m ∈ FD2 such that this is a satisfying assignment for I(Q). One reason

why such an assumption makes sense is that while the original constraints were unique, after projecting to Q
of co-dimension t we get a 2t-to-2t constraints which are much easier to satisfy. So in some sense we replace
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a single equation with the OR of 22t equations (for all possible projections) and so if t is sufficiently large as
a function of the original soundness δ, we could expect that this relaxation will allow us to get a satisfying
assignment.

To make good use of this property, we first note that the queries [u] and [v] are mapping vectors from
high dimension (FD2 ) to low dimension (F`2). As a result, both of them must have a large kernel12. Also, the
kernel of [u] and [v] must contain some Q that has the property stated in the assumption. Thus, a natural
way to design an attack is then associating each [u] and [v] with some canonical subspaces Q[u] and Q[v].
These canonical subspaces are predefined13 and thus are known to both provers.

Now on query (i, [u]) and (j, [v]), the malicious provers work as follows. (i) Find Q[u] and Q[v] respectively.
Note that as we discussed above, since [u] = [v], we have Q[u] = Q[v], i.e., the two provers agree on the same

subspace. (ii) Prover 1 returns [u](x
Q[u]

i ) and Prover 2 returns [v](y
Q[v]

j ). See Figure 11

Figure 11: Attack for noiseless protocol.

We claim that v ◦ [v]−1 ◦ [v]((y
Q[v]

j )) = u ◦ [u]−1 ◦ [u]((x
Q[u]

i )) and thus the verifier will always accept.
Consider the right-hand-side,

v ◦ [v]−1 ◦ [v]((y
Q[v]

j )) = v(y
Q[v]

j ) = v ◦ΠQ[v]
(y
Q[v]

j ).

Similarly,

u ◦ [u]−1 ◦ [u]((x
Q[u]

i )) = u ◦ΠQ[u]
(x
Q[u]

i ).

By the definition of I(Q), we have

v ◦ΠQ[v]
(y
Q[v]

j ) = v ◦ΠQ[v]
(x
Q[v]

i + ΠQ[v]
(σi,j)).

Since [u] = [v] and u is defined as v ◦ fi,j in the noiseless protocol, we have

v ◦ΠQ[v]
(x
Q[v]

i + ΠQ[v]
(σi,j)) = uΠ[u](x

Q[u]

i + ΠQ[u]
(σi,j)).

To sum up, we have v ◦ [v]−1 ◦ [v]((y
Q[v]

j )) = u ◦ [u]−1 ◦ [u]((x
Q[u]

i )) and thus the verifier will always accept.

We conclude this section with some remarks about the attack. Note that here the attack really needs the
two queries [u], [v] to be affine shifts of each other. When we add noise to the queries, it becomes unclear
whether this attack will still work because this relation between [u] and [v] is broken.

12Defined as N([u]) = {x ∈ FD
2 : [u](x) = 0}. Also known as null space.

13One can define it to be the smallest subspace of co-dimension t that is contained in the the kernel of [u] under lexicographical
order.
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S So far, we are on half way to our final goal. Please make
sure you are comfortable with the reduction and take a deep
breath before we go into the soundness analysis.

3 Soundness analysis of reducing from Unique Games

In this section, we are going to do the soundness analysis. To get the main ideas across, we first consider
reducing from Unique Games instead of Smooth Label Cover. That is, d = 0 both xi, yj ∈ FD2 , and after
the reduction, the alphabet size will go down to F`2. This is just an alphabet reduction, where each symbol
is replaced by a cloud indexed by matrices in A(D, `).

As our main lemma, we would like to prove that, if the reduced game is not sound then in fact the original
game was not sound. Formally stated,

Lemma 3.1. For any ε > 0, there exists `,D, δ. Let I be a Unique Games instance with constraints of the
form {yj = fi,j(xi)} where xi, yj ∈ FD2 and fi,j’s are affine. Suppose there exists an assignment F1, . . . , Fn
to the xi’s and G1, . . . , Gm to the yj’s where Fi, Gj : A(D, `) → F`2 for each i ∈ [n], j ∈ [m]. Let u, v, e be
sampled according to the protocol Pi,j, that is, v ∼ A(D, `), e ∈ R1(D, `), u = v ◦ fi,j + e. Then if,

Pr
i∼j

(u,v,e)∼Pi,j

[Gj(v) = Fi(u)] ≥ ε, (3.2)

Then there exists x1, . . . , xn, y1, . . . , ym ∈ FD2 such that

Pr
i∼j

[yj = fi,j(xi)] ≥ δ(ε). (3.3)

Basically, the soundness lemma says that once there’s assignment (F,G) satisfying ε fraction of the tests,
then there exists solution {x, y} to the unique games instance satisfying δ fraction of the constraints where
δ only depend on ε(not on D!). See subsection 4.1 for more discussion on the choice of parameters.

N The analysis involves many averaging arguments and we
will omit the blow-up in probabilities as long as it does not
depend on D.

For simplicity of notation, instead of thinking of our graph as bipartite with F and G nodes, we will
think of it as a constraint graph over the F nodes only since it is a unique game anyway and the encodings
of xi, yj are the same.

It is difficult to come up with an assignment {xi} to the original label cover problem directly from the
Fi’s. So instead of coming up with one assignment, we output a ”short” list of possible assignments! This
is done via list decoding.

Lemma 3.4. To show Eq.(3.3), it suffices to find lists L1, L2, . . . , Ln where Li ⊆ FD2 and |Li| ≤ s(ε, `) for
each i ∈ [n], j ∈ [n], such that

Pr
i∼j

[∃y ∈ Lj , ∃x ∈ Li, s.t. y = fi,j(x)] ≥ δ′(ε, `). (3.5)

Here s, δ′ are some functions in ε and `.
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A simple averaging argument shows that Lemma 3.4 implies Lemma Lemma 3.1.

S It is a good time for you to stop here and make sure what
our goal (reducing from what to what) is, what simplification
we are using, and why this makes sense.

3.1 List decoding an assignment

Our goal from now onwards is to produce lists {Li} given assignments {Fi}. We now define an important
graph which gives us a graph view of the verifier test.

Definition 3.6 (Short code graph). The short code graph G is the graph with vertices M ∈ A(D, `) and an
edge between M1,M2 if M2 = M1 + e, for some rank one matrix e ∈ R1(D, `). An assignment Fi, assigns
an `-bit string from F`2 to every vertex in this graph and we call the corresponding instance Gi. ♦

Note that since we consider the folded code, our assignment Fi is such that Fi(g ◦ v) = g ◦ Fi(v) for all
invertible g ∈ A(`, `), and our graphs Gi will necessarily have these consistencies too.

N Although we use a folded code, our graph contains all affine
functions A(D, `).

Make sure you understand the definition of the short code graph and do the following exercise.

E Prove that for any assignment Fi, all typical sets of Fi are
of the same size. Hint: Use the fact that Fi is a folded as-
signment.

Here is a graph view of the verifier test.

V Given an assignment {Gk}, the verifier test corresponds to
picking a random constraint i ∼ j, a random edge (v, v+e) ∈
G, and checking whether Gj(v) = Gi((v + e) ◦ fi,j).

Therefore the soundness analysis relies heavily on the properties of the base graph G. The [KMS18]
manuscript proved a combinatorial hypothesis about the expansion properties of the short code graph which
completed the proof of the 2-1 games conjecture.

For each Gi, we can partition the vertices into |F`2| = 2` sets by the value Fi assigns to the vertices
v ∈ A(D, `). We will refer to these sets as typical sets.

Furthermore, from Equation 3.2, we have the following lemma. Also, see Figure 12.

Lemma 3.7 (Typical sets are non-expanding). Suppose there exists an assignment F1, F2, . . . , Fn where
Fi : A(D, `)→ F`2 satisfying

Pr
i∼j

v∼A(D,`)

e∈R1(D,`)
u=v◦fi,j+e

[Fj(v) = Fi(u)] ≥ ε. (3.8)
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Then with probability at least ε/2 over the choice of constraints i ∼ j, for all typical sets F−1
i (α), α ∈ F`2, of

Fi and all typical sets F−1
j (α) of Fj, we have that,

Pr
v∼F−1

i (α)

e∈R1(D,`)

[Fi(v) = Fi(v + e) = α], ≥ ε′, (3.9)

and
Pr

v∼F−1
j (α)

e∈R1(D,`)

[Fj(v) = Fj(v + e) = α] ≥ ε′, (3.10)

where ε′ = Ω(ε3).

Proof. The idea is based on some averaging arguments and the expansion properties of the Cayley graph G.
Details can be found in subsection C.2.

Figure 12: The partition of assignment Fi on A(D, `). Note that for elements in the same block, they have
the same value of Fi. The typical set is non-expanding lemma tells us that a large fraction of edges e starting
at a particular typical set, remain inside the typical set.

N In the following, when say a set S in A(D, `)
is non-expanding with respect to Fi, it means that

Pr
v∈S

e∈R1(D,`)

[Fi(v) = Fi(v + e)] is not vanishing in n.

For a fixed i and a fixed typical set S inside Gi, the probability that a random vertex v ∼ S and random
edge e incident on v, stays inside S is equal to the probability over v, e that Fi(v + e) = Fi(v). Since all
typical sets are of the same size, Equation 3.2 is the average of this probability over all typical sets and it
tells us that under a largely consistent assignment Fi, a random typical set is non-expanding.

If the short code graph G was a small set expander, previous PCP techniques, for example [SW06] tell
us that our prover-verifier game with the reduced alphabet would be sound. Intuitively this is because
a test that passes with high probability implies that there is some set S that is (i) non-expanding (as in
Lemma 3.7) and (ii) induces a consistent assignment. By the small-set-expanding property, this means that
this set S cannot be small, since all small sets expand. Now, we have that S is large and induces a consistent
assignment. This means that our assignment is close to a valid codeword. As a valid codeword correspond to
an assignment for the original instance, this implies that whenever our game is not sound, even the original
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game was not sound and taking the contrapositive, we get a relation between the soundness of the new game
with respect to the original game.

Unfortunately our graph is not a small set expander. But the good news is that we can “characterize”
the non-expanding subsets of G using the following structured sets.

Definition 3.11 (Big and Small sets). Let a ∈ FD2 and b ∈ F`2. Define the corresponding big and small sets
corresponding to points a, b as,

BIGa,b = {v ∈ A(D, `) : v(a) = b}

and
SMALLa,b = {v ∈ A(D, `) : ∀c ∈ FD2 , v(〈a, c〉a) = v(c) = b}.

We can generalize the above as follows. Let Q ⊆ FD2 and W ⊆ F`2 to be affine subspaces of dimension r. That
is Q = span({q1, . . . , qr}) + q0 and W = span({w1, . . . , wr}) + w0 for some vectors qi ∈ FD2 and wi ∈ F`2.
Define the corresponding r-Big set and r-Small set as follows.

BIGQ,W = BIGq0,w0
∩ BIGq1+q0,w1+w0

∩ . . . ∩ BIGqr+q0,wr+w0

Or equivalently,
BIGQ,W = {v ∈ A(D, `) : ΠW ◦ v ◦ΠQ = v ◦ΠQ},

and
SMALLQ,W = {v ∈ A(D, `) : ΠW ◦ v ◦ΠQ = ΠW ◦ v},

where ΠQ : FD2 → FD2 and ΠW : F`2 → F`2 are the projections to subspaces Q and W respectively. Here ◦
denotes the composition of functions. ♦

N Some remarks about the definition. Boaz used the notation
1Q, 1Q, and matrix multiplication, instead of ΠQ, ΠW , and
◦. Also in the original paper [DKK+16], they use zoom-ins
and zoom-outs for small sets and big sets respectively.

The following proposition states some properties of the Big and Small sets. The proof will be postponed
to later section.

Proposition 3.12. Let Q ⊆ FD2 and W ⊆ F`2 be any subspaces of dimension r.

1. (geometric interpretation)

• For any v ∈ BIGQ,W , we have v(Q) ⊆W where v(Q) = {v(q) : ∀q ∈ Q}.
• For any v ∈ SMALLQ,W , we have Q⊥ ⊆ ker(ΠW ◦ v).

2. (non-expanding) We have

Pr
v∼BIGQ,W
e∼R1(D,`)

[v + e ∈ BIGQ,W ] ≥ 2−r,

Pr
v∼SMALLQ,W
e∼R1(D,`)

[v + e ∈ SMALLQ,W ] ≥ 2−r.

3. (low density) We have

µ(BIGQ,W ) ≈ 2−`r, µ(SMALLQ,W ) ≈ 2−Dr,

where µ(S) = |S|/|A(D, `)| for any subset S ⊆ A(D, `).
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The proof of Proposition 3.12 is pretty straightforward but a little lengthy so we include it in subsec-
tion C.1 for completeness. Let us interpret the proposition. The first item tells us about the structure of
BIGQ,W and SMALLQ,W , which will help us to bound the size of the lists {Li} we construct. The second
and third items together tell us that BIGQ,W and SMALLQ,W are small non-expanding sets, and we will
use them to characterize typical sets which are also non-expanding.

3.2 What is the list?

Now that we have all the notation in place, let us define the list Li of assignments we obtain from Gi. Recall
that this list would be a set of assignments for the original Label-Cover game (or Unique-Games). For
now, let us forget about Small sets and only worry about Big sets. Observe that each big set BIGQ,W for
some Q ⊆ FD2 corresponds to a list of assignments Q.

First, we need to capture what kind of Big sets we are interested in. Intuitively, for an assignment Fi,
we want a Big set B that has a large fraction of it having the same value under Fi. We call such Big set a
monochromatic set.

Definition 3.13 (monochromatic set). Let τ ∈ [0, 1], F : A(D, `) be an assignment and B be a Big set. We
say B is a τ -monochromatic set with respect to F if there exists α ∈ F`2 such that

|F−1(α) ∩B| ≥ τ |B|.

We call τ the goodness of B. ♦

Using this property, we define the list Li as follows. First, choose some parameters (which will be set in
the near future), let τ ∈ [0, 1] be the goodness of Big sets and r be the dimension of Big sets. We define,

Li = {Q : BIGQ,W is an r-Big set and BIGQ,W is τ(r)-monochromatic.}

E Verify that if Fi is a valid assignment, that is, if there exists
x ∈ FD2 such that Fi(v) = v(x) for any v ∈ A(D, `), then
Li = {x}.

But this list as defined might be very long, possibly of size 2rD. For this version of the notes though, we
do not prove that the list size is bounded by a function of `, ε. We conjecture that a pruning of this list by
a careful procedure will give us a short list. We will refer to the pruned list as, Pruned(Li), i.e.

Pruned(Li) = Pruned({Q : BIGQ,W is an r-Big set and BIGQ,W is τ(r)-monochromatic.})

N In this version of the notes, we do not know how to prove
that the list as defined above is short although we prove its
correctness. We believe that this list or some modification
of it can be proved to be short using an argument similar
to [DKK+16].
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Figure 13: The Pruned list corresponds to a set of maximal Big sets which are monochromatic.

Now that we have a list-decoding, we need to prove two properties to complete the soundness analysis:

• List size bounded: Each list Pruned(Li)is of size at most a constant which only depends on ε, τ, r and
not on D.

• Correctness: The lists satisfy Equation 3.5 which says that for most constraints (i, j), there is some
assignment x ∈ Li and y ∈ Lj such that y = fi,jx.

Item 1 combined with Item 2 imply that the original label cover game was sound.

S Please make sure you understand the construction of lists and
why the above two items suffice for the soundness theorem
before moving on.

3.2.1 Bounding the list size

Conjecture 3.14. There is an algorithm which prunes the lists {Li} for maximality, which ensures that the
final list size is bounded, i.e.

|{Pruned(Li)}| ≤ f(ε, τ, r, `).

Recall that a list Li is a set of all r-BIG sets which are τ(r) monochromatic. This may possibly be a list
of size 2rD whereas we want the size to only depend on constants r, τ, ε, `. The structure of the BIG sets
will possibly allow us to prune the list and get Pruned(Li) while retaining its properties.

Here is a vague outline of the proof. In Proposition 3.12 we proved that the BIG sets are non-expanding
and of low density. Using this, prove that, if we have m BIG sets, then we can replace it by a single BIG set
which contains all these sets and additionally, is also monochromatic. We continue this pruning until we are
left with a list of small size. This argument is based on the [DKK+16] paper and the ”sunflower argument”
therein. A formal proof will be presented in a later version of the notes.

3.2.2 Proof that this list works

We will now assume that our lists {Pruned(Li)} have been generated from an assignment {Fi} which has
soundness ≥ ε, or equivalently,

Pr
i∼j
(v,e)

[Fj(v) = Fi

(
(v + e) ◦ fi,j

)
] ≥ ε. (3.15)
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Using this we will prove that the original unique game was sound. Firstly, notice that an averaging
argument over pairs i ∼ j gives us the following lemma.

Lemma 3.16. Let {Fi} be an assignment that has soundness at least ε > 0. We have that, with probability
ε/2 over the choice of pairs i ∼ j,

Pr
(v,e)

[Fj(v) = Fi

(
(v + e) ◦ fi,j

)
≥ ε/2] (3.17)

We will show that whenever a pair i ∼ j satisfy, condition Equation 3.17, we get that the lists Pruned(Li)
and Pruned(Lj) contain a common element. This proves the list-decoding theorem Lemma 3.4 which implies
the soundness theorem.

From now on, we will fix such an i ∼ j pair, for which (3.17) holds. After fixing a pair i, j, we can
permute the assignment Fi by fi,j(replacing Fi(v) by Fi(v ◦ fi,j)), such that, now our verifier is checking
equality between (the permuted assignment)Fi and Fj . That is, we have that,

Pr
(v,e)

[Fj(v) = Fi(v + e)] ≥ ε/2.

To do this, we first want to find a set T such that T is monochromatic both on assignments Fi and Fj .
Using Lemma 3.7, we can prove that T is a non-expanding in the partition of Fi and Fj on the short code
graph G. The above intuition can be formulated into the following lemma.

Lemma 3.18. Let i ∼ j be a pair satisfies Equation 3.17. Then, there exists α, β ∈ F`2 such that, the set
T = F−1

i (α) ∩ F−1
j (β) is non-expanding in G.

Proof. We are unsure of the details of this proof, but we will include it in a later version of the notes. The
intuition is that this lemma should follow from the properties of Cayley graphs.

Now comes the role of the combinatorial hypothesis [DKK+16] that was proved in [BKS18]. It tells us
that every non-expanding set of G has a non-trivial intersection with Big set and/or Small set. Equivalently,
since most typical sets are non-expanding, this says that we can cover the graph Gi with monochromatic Big
sets and Small sets.

Theorem 3.19 ([KMS18]). For any ε > 0 there exists τ > 0 and integer r > 0 such that for any A ⊆ A(D, `),
if

P
v∈A

e∈R1(D,`)

[v + e ∈ A] ≥ ε.

Then, there exists r1-Big set B and r2-Small set S such that

|(B ∩ S) ∩A| ≥ τ · |B ∩ S|, (3.20)

where r1 + r2 ≤ r.

The above lemma completes the soundness analysis and it’s only 3 lines from here! For simplicity, here
we assume a stronger version of Theorem 3.19 where |(B ∩ S) ∩A| ≥ δ · |B| instead of ≥ |B ∩ S|.

N Note that the assumption that |(B ∩ S)∩A| ≥ δ · |B| is not
generally true. In fact, this corresponds to Boaz’s example
where monochromatic Big sets can cover the graph Gi. In
the next lecture, we will see how to handle the most general
case where this is not necessarily true and small sets are also
involved.
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Lemma 3.21. For any ε > 0 there exists r > 0 such that the following holds: Let i ∼ j be a pair satisfy-
ing Equation 3.17, then there exists an r-Big set B such that QB ∈ Li, Lj and additionally Pruned(Li) ∩
Pruned(Lj) 6= φ.

Proof Sketch. Let us first prove that there is a Big set B which is included in both lists Li and Lj . We will
look into the pruned case after that. Since T is a non-expanding set, theorem 3.19 gives us that there is some
big set B such that |B∩T | ≥ τ |B|. Recall that T = F−1

i (α)∩F−1
j (β), which means that B is monochromatic

with respect to both Fi and Fj . The way the lists Li, Lj were constructed we get that QB ∈ Li, Lj and so
Li ∩ Lj 6= φ.

N We haven’t concretely defined a pruning procedure, but we
conjecture that for some definition, the following holds.

In the case that we have pruned lists Pruned(Li),Pruned(Lj), we cannot say that the Big set B we
get above has been included even after pruning. But by the properties that the pruned lists would satisfy,
we can say that there exist big sets Bi and Bj where QBi ∈ Pruned(Li), QBj ∈ Pruned(Lj) such that
QB ⊆ QBi , QBj , which implies that QBi ∩ QBj 6= φ. This means that the pruned lists have a common
element, which is what we had set out to do.

This lemma completes the soundness analysis assuming the case that Big sets are enough to cover the
graph.

E Convince yourself that this completes the analysis and
proves Lemma 3.4.

4 Discussion

4.1 Relation among parameters

There are plenty of parameters show up in the reduction. In this subsection, we are going to discuss the
relation among them.

δ ⇒ r, τ ⇒ `⇒ |L| ⇒ ε⇒ d⇒ µ⇒ D. (4.1)

In the whole reduction, we first pick the soundness δ > 0, and in the end we hope for some small D,
which correspond to the blowup of the reduction. Specifically, it is of interest to explicitly upper bound
D(δ). After we pick δ, the dimension and goodness of monochromatic set are then decided by Theorem 3.19.
The dimension ` of the tiny alphabet set will also be determined as well as the size of the list. With these
parameters, we can then upper bound the soundness ε of the Label-Cover we want to reduce from. Finally,
the logarithmic alphabet ratio d and the smoothness µ are settled down and in the end we get to know how
large D should be.
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The high level points I’d like to both understand myself and convey to the audience are:
1. In what way is the DKKMS reduction similar to previous results like Hastad’s 3XOR and others that

used the long code or other gadgets on top of the label cover problem.
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2. In what way is it different, and in particular why is the need for smoothness in the underlying label
cover and hence a polynomial blowup.

3. What are the barriers to transforming this into a proof of the unique games conjecture - do we expect
that there would simply be a better gadget?

I have some understanding of 1 and 2, not real understanding of 3 yet but some thoughts on it. One
intuition I have is that previous reductions typically relied on an error correcting code with some local test,
and had a theorem of the form

”If some string F (e.g., a ”putative codeword” that we run the test on) passes the test with probability
larger than some constant ε > 0, then there is a constant sized list F1, ..., Ft of codewords such that a
constant fraction of coordinates of F agrees with at least some Fi in the list”

Sometimes the list was not exactly codewords but some generalization of it. For example Hastad’s test
used the longcode where the codewords are dictatorships, and the theorem said that any function passing
the test with constant probability must be correlated with some list of juntas.

I think DKKMS use a similar high level structure, but their list could be very large - of super constant
size. What saves them is that the list is ”structured” in some way (this is where their zoom in and zoom
out comes into play).

I am going to use somewhat different language than they do. To translate between the two you can use
the following ”dictionary” (below I try to be as consistent as possible with the notation and variables used
in DKKMS - in my talk I will probably use different notation and letters). This dictionary should also be
part of the scribe notes.

A.1 Difference 1: subspaces vs affine functions/matrices

Think of n� `.
I will think of the code where we map a string g in GF (2)n into a function F that maps every affine

function v : GF (2)n → GF (2)` into v(g).
That is, the error correcting code I will talk about maps every string in GF (2)n into a string over alphabet

GF (2)` of length roughly 2`n+` with coordinate corresponding to every affine function from GF (2)n to
GF (2)`.

DKKMS consider the code where we map a string g in GF (2)n (which we think of also as a linear function
from GF (2)n to GF (2)) into the function F that on input a subspace L ⊆ GF (2)n of dimension `, F (g) is
the restriction of the function g to the subspace L. (Note that this restriction can be represented using `
bits).

So their code maps every string in GF (2)n into a string of alphabet GF (2)` of length roughly 2`(n−`)

(roughly the number of ` dimensional subspaces of GF (2)n). Note that in both cases the dominant term is
2`n so the codes are rather similar.

A.2 Difference 2: the test

I will think of the test where given some putative codeword F , we choose a random affine function g :
GF (2)n → GF (2)` and a random rank one linear function e : GF (2)n → GF (2)n (that is a function of the
form e(x) = 〈x, u〉v where u, v are vectors in GF (2)n), and check if F (g) = F (g + e). This is a 1-to-1 test
(since we check equality between two coordinates of the putative codeword) that a correct codeword passes
with probability 1/2.

One can also think of the test where we check whether either F (g) = F (g + e) or F (g) = F (g + e) + v
where v is the vector above. This would be a 2-to-1 test that a correct codeword passes with probability 1.

DKKMS think of the test (see Test 1 in their paper) where given a putative codeword F , they choose two
` dimensional subspaces L1, L2 whose intersection L′ has `− 1 dimension and they accept if the restriction
of F (L1) to L′ is equal to the restriction of F (L1) to L′. This is a 2-to-2 test that a correct codeword passes
with probability 1. (The difference between 2 to 2 and 2 to 1 is immaterial). They could also have defined
a version of this test that would be 1-to-1 and will pass with probability 1/2.

So the tests are very similar as well.
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A.3 Difference 3: the ”Nice” sets.

I think of a ”d level nice big set” parameterized by a d-tuple W of vectors in GF (2)n and a d-tuple W ′ of
vectors in GF (2)` as the set BIGW,W ′ of all affine functions g : GF (2)n → GF (2)` such that g(Wi) = W ′i
for i = 1, . . . , d. Note that each such set constitutes about a 2−d` fraction of all functions.

I will think of a ”d level nice small set” parameterized by a pair of affine functions Q : GF (2)n → GF (2)d,
and Q′ : GF (2)` → GF (2)` as the set SMALLQ,Q′ of all affine functions g : GF (2)n → GF (2)` such that
the function x 7→ Q′(g(x)) equals to Q. Note that each such set constitutes about a 2−dn fraction of all
functions.

DKKMS think of a ”d zoom out” parameterized by a co-dimension d subspace W as the set of all
subspaces L such that L ⊆W . Note that this is about a 2−d` fraction of subspaces.

They think of a ”d zoom in” parameterized by a dimension d subspace Q as the set of all subspaces L
such that Q ⊆ L. Note this is about a 2−dn fraction of subspaces.

A.4 Difference 4: abstraction

Another difference between my presentation and the DKKMS is that I will try to abstract the particular
construction label cover instance.

I will think of a label cover instance which contains constraints of the form yj = fi,j(xi) for affine functions
fi,j : GF (2)2k → GF (2)2k−βk. (Think of β = O(log k/k) so βk ∼ log k.)

Another way to think of it is as a game where the verifier sends i to prover one and gets back xi ∈ GF (2)2k,
j to prover two and gets back yj ∈ GF (2)2k−βk, and checks whether yj = fi,j(xi).

They use a particular construction of such an instance which is obtained by staring with an underlying
3XOR instance. The verifier picks k random equations e1, . . . , ek (very likely to touch 3k distinct variables)
and sends them to the first prover, who sends back an assignment to the 3k variables that satisfies these.
(This can be described as a 2k dimensional vector since that is the dimension of the affine subspace of
satisfying assignments.) The verifier sends to the second prover k−βk of the equations plus one variable out
of each of the remaining variables. He gets back a satisfying assignment for the equations and an assignment
for the isolated variables. This can be described in 2(k − βk) + βk = 2k − βk bits. The verifier checks that
the two assignments are consistent, which is an affine check.

B Scriber’s dictionary

In this notes, many of the presentations are also different from what Boaz and DKKMS used. Here we try
to list all the difference and we hope to minimize the confusion of readers.

Notation

• DKKMS and us use F2 while Boaz uses GF (2). The two are the same.

• We use ΠQ to denote the projection operator to subspace ΠQ while Boaz uses 1Q.

• We use A(D, `) to denote the space of all affine functions from FD2 to F`2 while Boaz does not explicitly
give this set a name.

• We use ε, δ to denote the soundness of the original game (smooth Label-Cover) and the reduced
game (Unique-Games) respectively while Boaz uses in a reverse way.

• Most of the time we use function instead of matrix. As a result, the operations are denoted in function
composition ◦ while Boaz uses matrix multiplication most of the time.

• The way we doing list-decoding is different from that of Boaz. We directly pick all the τ(r)-monochromatic
set while Boaz carefully makes sure all the chosen τ(r)-monochromatic sets are disjoint.
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Folding and randomized query In the protocol we used in this notes, see Figure 10, we adopt the
folding notation. In Boaz’s presentation, sometimes he used a random query instead. See Figure 14.

Figure 14: The noisy protocol using randomized query instead of folding.

It is a good exercise to see why the two are equivalent up to some constant factor.

E Show that the noisy protocol with folding is sounda if and
only if the noisy protocol with randomized query is sound.
Hint: Averaging argument.

aThat is, the soundness is independent to n.

C Some missing proofs

C.1 Proof of the properties of Big and Small sets

Proof of Proposition 3.12.

1. This is left as an exercise for the reader.

2. Fix v ∈ BIG(D, `). Sampling e from R1(D, `), is equivalent to sampling a and b uniformly at random
in F`2 and FD2 respectively and setting e′ = ab>14. Let {q1, q2, . . . , qr} be a basis of Q, we have

Pr
e∼R1(D,`)

[v + e ∈ BIGQ,W ] = Pr
e∼R1(D,`)

[(v + e)(Q) ⊆W ]

≥ Pr
e∼R1(D,`)

[e(Q) = 0]

= Pr
a∼F`2, b∼FD2

[ab>qi = 0, ∀i ∈ [r]]

= 2−r,

14Note that with this sampling there’s a small probability (2−(D+`)) of e′ being a zero matrix, which has rank zero and thus
e /∈ R1(D, `). However, for the simplicity of analysis, we use this sampling and omit the probability of degenerating.
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where the second step follows from linearity of the functions and item 1. Similarly,

Pr
e∼R1(D,`)

[v + e ∈ SMALLQ,W ] = Pr
e∼R1(D,`)

[Q⊥ ⊆ ker(ΠW ◦ (v + e))]

≥ Pr
e∼R1(D,`)

[e(Q) = 0]

= 2−r.

3. Note that µ(BIGQ,W ) = Pv∈A(D,`)[v ∈ BIGQ,W ]. Recall that from item 1, v ∈ BIGQ,W if v(Q) ⊆ W .
Let {q1, . . . , qr} be a basis for Q. Observe that for any i ∈ [r]

Pr
v∼A(D,`)

[v(qi) ⊆W ] =
|W |
|F`2|

= 2r−`.

Also, since {qi} is a basis, the probabilities for distinct qi, qj are independent. That is,

Pr
v∼A(D,`)

[∀i ∈ [r], v(qi) ⊆W ] = 2r(r−`).

Finally, note that v(Q) ⊆W if and only if v(qi) ∈W for all i ∈ [r]. As a result,

µ(BIGQ,W ) = Pr
v∼A(D,`)

[v ∈ BIGQ,W ] = 2r
2−r` ≈ 2−r`,

where we think of r being much smaller than `.

The density of SMALLQ,W can be approximated in a similar way by using a basis for Q⊥.

C.2 Proof of typical sets are non-expanding lemma

Proof of Lemma 3.7. Let us restate Lemma 3.7 here.

Lemma C.1. Suppose there exists an assignment F1, F2, . . . , Fn where Fi : A(D, `)→ F`2 satisfying

Pr
i∼j

v∼A(D,`)

e∈R1(D,`)
u=v◦fi,j+e

[Fj(v) = Fi(u)] ≥ ε. (C.2)

Then with probability at least ε/2 over the choice of constraints i ∼ j, for all typical sets F−1
i (α) of Fi, where

α ∈ F`2, and all typical sets F−1
j (α) of Fj, we have that,

Pr
v∼F−1

i (α)

e∈R1(D,`)

[Fi(v) = Fi(v + e) = α] ≥ ε′, (C.3)

and
Pr

v∼F−1
j (α)

e∈R1(D,`)

[Fj(v) = Fj(v + e) = α] ≥ ε′, (C.4)

where ε′ = Ω(ε3).

We will first prove that,
Pr

v∼A(D,`)

e∈R1(D,`)

[Fi(v) = Fi(v + e)] ≥ ε′. (C.5)
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Note that here the probability is over all vertices v ∈ A(D, `). It is enough to prove this because by the
symmetry of the short code graph this implies that, for all typical sets,

Pr
v∼F−1

i (α)

e∈R1(D,`)

[Fi(v) = Fi(v + e) = α] ≥ ε′. (C.6)

Let us start with some notations. In this proof, we use the matrix representation of A(D, `). That is, each
element is represented by a `×D boolean matrix. The test in the protocol becomes checking the consistency
between a matrix A and A plus a rank one matrix. Formally, we can define the underlying testing graph as
GD,` = (F`×D2 , ED,`) where

ED,` = {(A,B) : A,B ∈ F`×D2 , A−B = abT , a ∈ F`2, b ∈ FD2 }.

Now, denote the normalized adjacency matrix of GD,` as MD,`. That is, the `1 norm of each column of
MD,` is 1. Then MD,` captures the random walk on GD,`. Specifically, for any S ⊆ F`×D2 , let 1S be the
indicator of S. 1>SMD,`1S/|S| is the probability of beginning in S and staying in S after one step. That is,
1>SMD,`1S/|S| refers to the non-expandingness of S.

S Please make sure you understand the matrix representation
of A(D, `), the testing graph GD,`, and how these connect to
the soundness lemma and the non-expanding property.

Now, let us go back to the starting point of the soundness lemma. Consider a typical set defined by
Si,α = {v ∈ F`×D2 : Fi(v) = α}. Equation C.2 tells us that Si,α is non-expanding with respect to M2

D,`.
Concretely, we have the following lemma.

Lemma C.7 (typical set is non-expanding w.r.t. two-step random walk). Given Equation C.2, with proba-
bility at least ε/2 over the choice of constraints (i, j),

Pr
v∼A(D,`)

e,e′∈R1(D,`)

[Fi(v) = Fi(v + e+ e′)] ≥ ε3/64,

Proof of Lemma C.7. In this proof, we think of fi,j as identity function for simplicity. First, by averaging
argument, with probability at least ε/2 over the choice of pair (i, j) ∈ [n]× [n],

Pr
v∼A(D,`)

e∈R1(D,`)

[Fj(v) = Fi(v + e)] ≥ ε/2.

We call an element v ∈ A(D, `) good if Fj(v) = Fi(v + e) with probability at least ε/4 over the choice of e.
Formally, define

GOODi,j = {v : Pr
e∈R1(D,`)

[Fj(v) = Fi(v + e)] ≥ ε/4}.

By averaging argument, we have Prv∈A(D,`)[v ∈ GOODi,j ] ≥ ε/4. Now, let us look at the two-step non-
expanding probability as follows.

Claim C.8.

Pr
v∈A(D,`)

e,e′∈R1(D,`)

[Fi(v) = Fi(v + e+ e′)] ≥ ε3

64
.
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Proof of Claim C.8.

Pr
v∈A(D,`)

e,e′∈R1(D,`)

[Fi(v) = Fi(v + e+ e′)]

≥ Pr
v∈A(D,`)

e,e′∈R1(D,`)

[Fi(v) = Fj(v + e) = Fi(v + e+ e′)]

≥ Pr
v∈A(D,`)

[v ∈ GOODi,j ] · Pr
v∈GOODi,j
e,e′∈R1(D,`)

[Fi(v) = Fj(v + e) = Fi(v + e+ e′)] (C.9)

≥ ε
4
· Pr
v∈GOODi,j
e,e′∈R1(D,`)

[Fj(v) = Fi(v + e) and Fj(v) = Fi(v + e′)] (C.10)

≥ ε
4
·

∑
v∈GOODi,j

Pr
e,e′∈R1(D,`)

[Fj(v) = Fi(v + e) and Fj(v) = Fi(v + e′)] (C.11)

≥ ε
4
·

∑
v∈GOODi,j

Pr
e∈R1(D,`)

[Fj(v) = Fi(v + e)] · Pr
e′∈R1(D,`)

[Fj(v) = Fi(v + e′)] (C.12)

≥ ε
3

64
. (C.13)

Equation C.9 conditions on the good elements in A(D, `). Equation C.10 relabel (v, v + e, v + e+ e′) to
(v + e, v, v + e′′). Note that the distributions of the two labeling are the same. Equation C.11 expand the
probability of good event so that in the next step we can separate the probability by the independence of e
and e′. Equation C.12 is due to the independence of e and e′′ and Equation C.13 is due to the definition of
GOODi,j .

Equivalently, the result of Lemma C.7 can be written as the matrix form 1>M2
D,`1/|A(D, `)| ≥ ε′. Recall

that our goal is to show that Si,α is non-expanding with respect to one step of random walk. That is, we
hope for 1>MD,`1/|A(D, `)| ≥ ε′′ for some constant ε′′. In the following, we achieve this goal by showing
MD,` is positive semidefinite. Before we prove that MD,` is positive semidefinite, let us first see why this
implies the our goal.

Note that the absolute value of the eigenvalues of MD,` is at most 1 due to the normalization. If M`,D

is positive semidefinite, it immediately implies that x>MD,`x ≥ x>M2
D,`x for any vector x. That is,

Pr
v∈A(D,`)

e∈R1(D,`)

[Fi(v) = Fi(v + e)] =
1>MD,`1

|A(D, `)|
≥

1>M2
D,`1

|A(D, `)|
≥ ε′.

MD,` is positive semidefinite To show that MD,` is positive semidefinite, it suffices to show that the
adjacency matrix of GD,` is positive semidefinite. Observe that GD,` is a Cayley graph on group F`×D2 with
generator S = {ab> : a ∈ F`2, b ∈ FD2 }. As a result, the eigenvalues of the adjacency matrix of GD,` can be
characterized by the characters of F`×D2 .

The characters of a group G is a mapping χ from G to C\{0} satisfying the property χ(g ·g′) = χ(g)·χ(g′)
for any g, g′ ∈ G. It can be easily shown that the characters of the group F`×D2 is of the form χH(A) =

(−1)tr(H
>A) where H ∈ F`×D2 . It is also well-known that the eigenvalues of the adjacency matrix of the

Cayley graph is of the following form. For any H ∈ F`×D2 ,

λ(H) =
1

|S|
∑
A∈S

χH(A) =
1

|S|
∑
a∈F`2

∑
b∈FD2

χH(ab>).
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Let us rewrite the summands and have

χH(ab>) = (−1)tr(H
>ab>) = (−1)a

>Hb.

When we fix a b ∈ FD2 , if Hb = 0, then for all a ∈ F`2 a>Hb = 0 and thus
∑
a∈F`2(−1)a

>Hb = 1. If Hb 6= 1,

then half of the a ∈ F`2 has inner product 1 with Hb and half of them has inner product 0. As a result,∑
a∈F`2(−1)a

>Hb = 0. The above discussion implies that

λ(H) =
1

|S|
∑
a∈F`2

∑
b∈FD2

χH(ab>) ≥ 0.

We conclude that MD,` is positive semidefinite.
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