
How to Compress Interactive Communication

Boaz Barak∗ Mark Braverman† Xi Chen‡ Anup Rao§

November 10, 2009

Abstract

We describe new ways to simulate 2-party communication protocols to get protocols with
potentially smaller communication. We show that every communication protocol that commu-
nicates C bits and reveals I bits of information to the participating parties can be simulated by
a new protocol involving at most Õ(

√
CI) bits of communication. In the case that the parties

have inputs that are independent of each other, we get much better results, showing how to
carry out the simulation with Õ(I) bits of communication.

These results lead to a direct sum theorem for randomized communication complexity. Ig-
noring polylogarithmic factors, we show that for worst case computation, computing n copies
of a function requires

√
n times the communication required for computing on copy of the func-

tion. For average case complexity, given any distribution µ on inputs, computing n copies of the
function on n independent inputs sampled according to µ requires

√
n times the communication

for computing one copy. If µ is a product distribution, computing n copies on n independent
inputs sampled according to µ requires n times the communication required for computing the
function. We also study the complexity of computing the sum (or parity) of n evaluations of f ,
and obtain results analogous to those above.

As far as we know, our results give the first compression schemes for general randomized
protocols and the first direct sum results in the general setting. Previous results applied only
when the protocols were restricted to running in a constant number of rounds, where each
message can be compressed in turn, and only applied when the parties are given independent
inputs.

∗Department of Computer Science, Princeton University, boaz@cs.princeton.edu. Supported by NSF grants
CNS-0627526, CCF-0426582 and CCF-0832797, US-Israel BSF grant 2004288 and Packard and Sloan fellowships.

†Microsoft Research New England, mbraverm@cs.toronto.edu.
‡Department of Computer Science, Princeton University, csxichen@gmail.com. Supported by NSF Grants CCF-

0832797 and DMS-0635607.
§Center for Computational Intractability, Princeton University, anuprao@cs.washington.edu. Supported by NSF

Grant CCF 0832797.

1

Contents

1 Introduction 2
1.1 Our Results . 3

1.1.1 Compressing Communication Protocols . 4
1.1.2 Direct sum theorems . 5
1.1.3 XOR Lemmas for communication complexity 6

2 Our Techniques 6
2.1 Compression in the general case . 8
2.2 Compression when the inputs are independent . 9

3 Preliminaries 10
3.1 Information Theory . 10
3.2 Communication Complexity . 12
3.3 Finding differences in inputs . 13

4 Proof of the direct sum theorem 13

5 Reduction to Small Information Content 15

6 Protocol compression: the non product case 17
6.1 A proof sketch . 17
6.2 The actual proof . 18

7 Proofs for the Product Case 22
7.1 A proof sketch . 22
7.2 The actual proof. 23
7.3 Proof of Theorem 7.4 . 25

7.3.1 A single round . 26
7.3.2 The whole protocol . 30

8 Open problems and final thoughts 31

A A simple generalization of Azuma’s inequality 33

B Analyzing Rejection Sampling 34

C Finding The First Difference in Inputs 35

1

1 Introduction

In this work, we address two questions: (1) Can we compress the communication of an interactive
protocol so it is close to the information conveyed between the parties? (2) Is it harder to compute
a function on n independent inputs than to compute it on a single input? In the context of
communication complexity, the two questions are related, and our answer to the former will yield
an answer to the latter.

Techniques for message compression, first considered by Shannon [Sha48], have had a big impact
on computer science, especially with the rise of the Internet and data intensive applications. Today
we know how to encode messages so that their length is essentially the same as the amount of
information that they carry (see for example the text [CT91]). Can we get a similar savings in an
interactive setting? A first attempt might be to simply compress each message of the interaction in
turn. However, this compression involves at least 1 bit of communication for every message of the
interaction, which can be much larger than the total information conveyed between the parties. In
this paper, we show how compress interactive communication protocols in a way that is independent
of the number of rounds of communication, and in some settings, give compressed protocols with
communication that has an almost linear dependence on the information conveyed in the original
protocol.

The second question is one of the most basic questions of theoretical computer science, called
the direct sum question, and is closely related to the direct product question. A direct product
theorem in a particular computational model asserts that the probability of success of performing
n independent computational task decreases in n. Famous examples of such theorems include
Yao’s XOR Lemma [Yao82] and Raz’s Parallel Repetition Theorem [Raz95]. In the context of
communication complexity, Shaltiel [Sha03] gave a direct product theorem for the discrepancy of a
function, but it remains open to give such a theorem for the success probability of communication
tasks. A direct sum theorem asserts that the amount of resources needed to perform n independent
tasks grows with n. While the direct sum question for general models such as Boolean circuits has
a long history (cf [Uhl74, Pau76, GF81]), no general results are known, and indeed they cannot be
achieved by the standard reductions used in complexity theory, as a black-box reduction mapping
a circuit C performing n tasks into a circuit C ′ performing a single task will necessarily make
C ′ larger than C, rather than making it smaller. Indeed it is known that at least the most
straightforward/optimistic formulation of a direct sum theorem for Boolean circuits is false.1

Nevertheless, direct sum theorems are known to hold in other computational models. For
example, an optimal direct sum theorem is easy to prove for decision tree depth. A more interesting
model is communication complexity, where this question was first raised by Karchmer, Raz, and
Wigderson [KRW91] who conjectured a certain direct sum result for deterministic communication
complexity of relations, and showed that it would imply that P * NC1. Feder, Kushilevitz, Naor,
and Nisan [FKNN91] gave a direct sum theorem for non-deterministic communication complexity,
and deduced from it a somewhat weaker result for deterministic communication complexity— if a
single copy of a function f requires C bits of communications, then n copies require Ω(

√
Cn) bits.

Feder et al also considered the direct sum question for randomized communication complexity (see
also Open Problem 4.6 in [KN97]) and showed that the dependence of the communication on the

1The example comes from fast matrix multiplication. By a counting argument, there exists an n×n matrix A over
GF(2) such that the map x 7→ Ax requires a circuit of Ω(n2/ log n) size. But the map (x1, . . . , xn) 7→ (Ax1, . . . , Axn)
is just the product of the matrices A and X (whose columns are x1, . . . , xn) and hence can be carried out by a circuit
of O(n2.38) ≪ n · (n2/ log n). See Shaltiel’s paper [Sha03] for more on this question.

2

error of the protocol for many copies can be better than that obtained by the naive protocol for
many copies.

Chakrabarti et al [CSWY01] gave a direct sum theorem in the case that the communication
involves one simultaneous round of communication, while Jain et al [JRS03] (improved upon by
[HJMR07]) gave a direct sum theorem for the distributional complexity of constant round ran-
domized protocols when the inputs are assumed to be independent of each other. These results
only apply when the number of rounds in the protocol is fixed to some constant, and so give no
guarantees in the standard model, with unbounded number of rounds.

All of the works mentioned above, had a common outline that we follow in this work as well.
They began by measuring the information that an observer learns about the inputs of the parties
by watching the messages and public randomness of the protocol, a quantity that they called the
information cost of the protocol. Formally, the information cost was defined to be the mutual
information I(XY ;π) between the inputs (XY), and the messages sent and the public randomness
in the protocol (π).

The information cost is always smaller than the communication complexity, and if the inputs
to the parties are independent of each other (i.e. X is independent of Y), an optimal direct sum
theorem can be proved for this measure of complexity. This means that from a protocol computing
n copies of f with communication C, one can obtain a protocol computing f with information cost
C/n, as long as the inputs to f are independent of each other. Thus the problem of proving direct
sum theorems for independent inputs reduces to the problem of simulating a protocol τ with small
information cost with a protocol ρ that has small communication. That is, the direct sum question
reduces to the problem of protocol compression. Previous works carried out the compression by
compressing every message of the protocol individually, hence the dependency on the number of
rounds. Our stronger method of compression allows us to get new direct sum theorems that are
independent of the number of rounds of communication.

1.1 Our Results

In our work we define a different measure of the information complexity of a communication proto-
col, that we call the information content of the protocol. The information content of the protocol
is the information that the parties in the protocol learn by watching the messages and public
randomness of the protocol, that they did not already know. Formally,

Definition 1.1. Given a distribution µ on inputs X,Y , and protocol π, denoting by π(X,Y) the
public randomness and messages exchanged during the protocol, we call the quantity

ICµ(π)
def
= I(X;π(X,Y)|Y) + I(Y ;π(X,Y)|X)

the information content of π.

Since each party knows her own input, the protocol can only reveal less information to her than
to an independent observer. Thus the information content is never larger than the information cost.
It can be shown that the information content of a protocol is the same as the information cost,
if the inputs are independent of each other. However, in the case that the inputs are dependent,
the information content may be significantly smaller — for example, if µ is a distribution where
X = Y always, then the information content is always 0, though the mutual information between
the messages and the inputs (i.e. the information cost) can be arbitrarily large. It is also easy to

3

check that if π is deterministic, then the information content is simply the sum of the entropies
ICµ(π) = H(π(X,Y)|Y)+H(π(X,Y)|X), which is the same as H(π(X,Y)) if X,Y are independent.

The notion of information content was used implicitly by Bar-Yossef et al [BYJKS04], and a
direct sum theorem for this notion (using the techniques originating from Razborov [Raz92] and
Raz [Raz95]) is implicit in their work. This direct sum theorem holds whether or not the inputs
to the parties are independent of each other, unlike the analogous result for information cost. We
can convert any protocol computing n copies of f with communication C into one that computes
f with information content C/n and communication complexity C.

Our most important contributions are two new protocol compression methods that reduce the
communication of protocols in terms of their information content. The first method works even
for non-product distributions over the inputs and can simulate a protocol of information content I
and communication complexity C using an expected number of Õ(

√
IC) communication bits. The

second method works only for product distributions but can simulate any protocol of information
content I with expected Õ(I) communication. Note that in both cases the simulation cost is
independent of the number of rounds. Indeed, these are the first compression schemes that do true
protocol compression, as opposed to compressing each round at a time. The first result is also the
first such compression scheme for non-product distribution over the inputs.

As a result, we obtain the first non-trivial direct sum theorem for randomized communication
complexity. Loosely speaking, letting fn be the function that outputs the concatenation of n
invocations of f on independent inputs, and letting f+n be the function that outputs the XOR of n
such invocations, we show that (a) the randomized communication complexity of both fn and f+n

is up to logarithmic factors
√

n times the communication complexity of f , and (b) the distributional
complexity of both fn and f+n over the distribution µn, where µ is a product distribution over
individual input pairs, is n times the distributional complexity of f .2

1.1.1 Compressing Communication Protocols

We give two new protocol compression algorithms, that take a protocol π whose information content
is small and transforms it into a protocol τ of small communication complexity.3 Below we denote
the communication complexity of a protocol τ by CC(τ).

Theorem 1.2. There is a universal constant c such that for every distribution µ, every protocol

π, and every ǫ > 0, there exists functions πx, πy, and a protocol τ such that |πx(X, τ(X,Y)) −
π(X,Y)| < ǫ, Pr[πx(X, τ(X,Y)) 6= πy(Y, τ(X,Y))] < ǫ and

CC(τ) ≤ c
√

CC(π) · ICµ(π)
log(CC(π)/ǫ)

ǫ
.

If the players want to obtain the results of running the protocol π, they can run τ instead and
then use the functions πx, πy to reconstruct the effects of running π. The condition |πx(X, τ(X,Y))−
π(X,Y)| < ǫ ensures that the transcript of τ specifies a unique leaf in the protocol tree for π in
such a way that this leaf is ǫ-close in statistical distance to the leaf sampled by π. The condition

2In both (a) and (b), there is a loss of a constant additive factor in the actual statement of the result for f+n.
This accounts for the fact that if, say, f is the XOR function itself then clearly there is no direct sum theorem. See
Remark 1.11.

3 We note that this is in the communication complexity model, and hence these compression schemes are not
necessarily computationally efficient. Even for singly message compression there are distributions with small entropy
that cannot be efficiently compressed (e.g. pseudorandom distributions).

4

that Pr[πx(X, τ(X,Y)) 6= πy(Y, τ(X,Y))] < ǫ guarantees that with high probability both players
achieve a consensus on what the sampled leaf was. Thus, the triple τ, πx, πy specify a new protocol
that is a compression of π.

In the case that the distribution µ over the inputs is a product distribution, µ = µx × µy, we
get a stronger result that is tight up to polylogarithmic terms:

Theorem 1.3. For every product distribution µ, every protocol π, and every ǫ > 0, there exists

functions πx, πy, and a protocol τ such that |πx(X, τ(X,Y)) − π(X,Y)| < ǫ, Pr[πx(X, τ(X,Y)) 6=
πy(Y, τ(X,Y))] < ǫ and

CC(τ) ≤ ICµ(π)
polylog(CC(π)/ǫ)

ǫ
.

Our results can be viewed as some kind of generalization of the traditional notion of string com-
pression, a notion that applies only to the more restricted case of deterministic one way protocols.
In the above theorems, our compressed protocols may use public randomness that can be large
(though still bounded in terms of the communication complexity of the original protocol). How-
ever, we note that by the results of Newman [New91], any protocol that achieves some functionality
can be converted into another protocol that achieves the same functionality and uses few public
random bits. Thus our compression schemes are useful even when public randomness is expensive.

1.1.2 Direct sum theorems

Given a function f : X ×Y → Z, we define the function fn : X n×Yn → Zn to be the concatenation
of the evaluations:

fn(x1, . . . , xn, y1, . . . , yn)
def
= (f(x1, y1), f(x2, y2), . . . , f(xn, yn)).

Denote by Rρ(f) the communication complexity of the best randomized public coin protocol
for computing f that errs with probability at most ρ. In this paper we show:

Theorem 1.4 (Direct Sum for Randomized Communication Complexity). For every α > 0,

Rρ(f
n) · log (Rρ(f

n)/α) ≥ Ω
(

Rρ+α(f)α
√

n
)

Theorem 1.4 is obtained using Yao’s min-max principle from an analogous theorem for distri-

butional communication complexity. For a distribution µ on the inputs X × Y, we write Dµ
ρ (f) to

denote the communication complexity of the best protocol (randomized or deterministic) that com-
putes f with probability of error at most ρ when the inputs are sampled according to µ. We write
µn to denote the distribution on n inputs, where each is sampled according to µ independently.

We first state the direct sum theorem for information content that is implicit in the work of
[BYJKS04].

Theorem 1.5. For every µ, f, ρ there exists a protocol τ computing f on inputs drawn from µ with

probability of error at most ρ and communication at most D
µn

ρ (fn) such that ICµ(τ) ≤ 2Dµn

ρ (fn)
n .

Compressing protocol τ above using Theorem 1.2 reduces the communication of this protocol

to Õ

(

√

ICµ(τ)Dµn

ρ (fn)

)

= Õ(Dµn

ρ (fn)
√

n). Formally, we prove:

5

Theorem 1.6 (Direct Sum for Distributional Communication Complexity). For every α > 0,

Dµn

ρ (fn) · log
(

Dµn

ρ (fn)/α
)

≥ Ω
(

D
µ
ρ+α(f)α

√
n
)

The communication complexity bound of Theorem 1.6 only grows as the square root of the
number of repetitions. However, in the case that the distribution on inputs is a product distribution,
we use our stronger compression (Theorem 1.3) to obtain a direct sum theorem that is optimal up
to logarithmic factor:

Theorem 1.7 (Direct Sum for Product Distributions). If µ is a product distribution, then for

every α > 0
Dµn

ρ (fn) · polylog
(

Dµn

ρ (fn)/α
)

≥ Ω
(

D
µ
ρ+α(f)αn

)

1.1.3 XOR Lemmas for communication complexity

When n is very large in terms of the other quantities, the above theorems can be superseded by
trivial arguments, since fn must require at least n bits of communication just to describe the
output. Our next set of theorems show that almost the same bounds apply to the complexity of
the XOR (or more generally sum modulo K) of n copies of f , where the trivial arguments do not
hold. Assume that the output of the function f is in the group ZK for some integer K, and define

f+n(x1, . . . , xn, y1, . . . , yn)
def
=

n
∑

i=1

f(xi, yi).

We have the following results for the complexity of f+n:

Theorem 1.8 (XOR Lemma for Randomized Communication Complexity). For every α > 0,

Rρ(f
+n) · log

(

Rρ(f
+n)/α

)

≥ Ω
(

(Rρ+α(f) − 2 log K)α
√

n
)

Theorem 1.9 (XOR Lemma for Distributional Communication Complexity). For every α > 0,

Dµn

ρ (f+n) · log
(

Dµn

ρ (f+n)/α
)

≥ Ω
((

D
µ
ρ+α(f) − 2 log K

)

α
√

n
)

Theorem 1.10 (XOR Lemma for Product Distributions). If µ is a product distribution, then for

every α > 0,
Dµn

ρ (f+n) · polylog
(

Dµn

ρ (f+n)/α
)

≥ Ω
((

D
µ
ρ+α(f) − 2 log K

)

αn
)

Remark 1.11. If f : ZK×ZK → ZK is itself the sum function, then the communication complexity
of f+n does not grow at all, since there is a simple protocol to compute

∑

i(xi +yi) =
∑

i xi +
∑

j yj

using 2 log K bits. This suggests that some kind of additive loss (like the 2 log K term above) is
necessary in the above theorems.

2 Our Techniques

We now give an informal overview of our compression algorithms. Our direct sum results are
obtained in Section 4 by combining these with the direct sum for information content proven in
Section 5. Full description of the compression algorithms are given in section 6 (for the general
case) and 7 (for the product distribution case).

6

The goal of our compression algorithms is to take a protocol that uses large amounts of com-
munication and conveys little information, and convert it into a protocol that makes better use
of the communication to achieve better communication complexity. (Such algorithms need not be
necessarily computationally efficient, see Footnote 3.)

Note that generic message compression can be fit into this context by considering a deterministic
one-way protocol, where player X needs to send a message to player Y . In this classical setting it is
well known that protocol compression (i.e. simple data compression) can be achieved. In principle,
one could try to apply round-by-round message compression to compress entire protocols. This
approach suffers from the following fatal flaw: individual messages may (and are even likely) to
contain ≪ 1 bits of information. The communication cost of ≥ 1 bit per round would thus be ≫
information content of the round. Thus any attempt to implement the compression on a round-
by-round basis, as opposed to an entire-protocol basis may work when the number of rounds is
bounded, but is doomed to fail in general.

An instructive example on conveying a subconstant amount of information that we will use later
in this exposition is the following. Suppose that player X gets n independent random bits x1, . . . , xn

and Y has no information about them. X then computes the majority m = MAJ(x1, . . . , xn) and
sends it to Y . With a perfectly random prior, the bit m is perfectly balanced, and thus in total
X conveys one bit of information to Y . Suppose that in the protocol Y only really cared about
the value of x5. How much information did X convey about the input x5? By symmetry and
independence of the inputs, X conveys 1/n bits of information about x5. After the bit m (suppose
m = 1) is received by Y , her estimate of P [x5 = 1] changes from 1/2 to 1/2 + Θ(1/

√
n). The fact

that changing the probability from 1/2 to 1/2 + ǫ only costs ǫ2 bits of information is the cause for
the suboptimality of our general compression algorithm.

There are several challenges that need to be overcome to compress an arbitrary protocol. An
interesting case to consider is a protocol where the players alternate sending each other messages,
and each transmitted message is just a bit with information content ǫ ≪ 1. In this case, we cannot
afford to even transmit one bit to simulate each of the messages, since that would incur an overhead
of 1/ǫ, which would be too large for our application. This barrier was one of the big stumbling
blocks for earlier works, which is why their results applied only when the number of rounds in the
protocols was forced to be small.

We give two simulation protocols to solve this problem. The first solution works for all distribu-
tions, achieving sub-optimal parameters, while the second works only for product input distributions
and achieves optimal parameters up to poly-logarithmic factors. In both solutions, the players sim-
ulate the original protocol π using shared randomness. The intuition is that if a message contains
a small amount of information, then we do not need to communicate it, and can sample it using
shared randomness instead.

It will be convenient to think of a protocol in terms of its protocol tree, after fixing the shared
randomness (there may still be private randomness that is not fixed). This is a binary tree where
every node v belongs to one of parties in the protocol, and specifies the probability of sending 1 or 0
as the next bit. We then define the tree of probabilities illustrated in Figure 1 as follows. For each
node vx of the protocol tree that is owned by the player X (i.e. it is his turn to speak), player X
knows the “correct” probabilities Ovx,x(0) and Ovx,x(1) of the bit that she is about to send. Player
Y does not know these probabilities, but she has estimates Ovx,y(0) and Ovx,y(1) for them based
on her input Y (formally these estimates are simply the probability of seeing a 0 or 1 conditioned
on the protocol reaching vx and conditioned on y). In the case where the input distribution µ is

7

v

u

0
 1
 0
 0
 1
 1
 1
 0

O
v
,
x
(
0
)
 [
O
v
,
y
(
0
)
]
 O
v
,
x
(
1
)
 [
O
v
,
y
(
1
)
]

O
u
,
y
(
0
)
 [
O
u
,
x
(
0
)
]
 O
u
,
y
(
1
)
 [
O
u
,
x
(
1
)
]

Figure 1: An illustration of the protocol tree for π. The round nodes are owned by X and the square
nodes are owned by Y . On each edge the “correct” probability is indicated. The “approximate”
probability that is estimated by the player who does not own the node is shown in the brackets.

a product distribution µ = µx × µy, the X player can also compute the estimates Ovx,y(0) and
Ovx,y(1), since they are independent of the input y given the node vx. The goal is to simulate the
protocol according to the “correct” distributions.

2.1 Compression in the general case

u

v

w

0
 1
 0
 0
 1
 0
 1
 0

u

v

w

0
 1
 0
 0
 1
 0
 1
 0

P
l
a
y
e
r
X
 P
l
a
y
e
r
Y

Figure 2: An illustration of the compression protocol for non-product distributions. The circle
nodes are owned by player X and the square nodes are owned by Y . The figure illustrates the
states of the protocol trees after all the bits have been sampled. The players then proceed to
resolve their disagreements. The disagreement at node u is resolved in favor of X since he owns the
node. The protocol proceeds to node v where the disagreement is resolved in favor of Y . The final
computation path in this case is u− v −w, the output is 0, and the total number of disagreements
along the path is 2.

In our first compression protocol, the players use shared randomness to sample the bit at every
node of the protocol tree for π(x, y). In other words, for every prefix v of messages, each player
samples the next bit of the interaction according to the best guess that they have for how this
bit is distributed, even if the next bit is actually transmitted by the other player in the original
protocol. The players do this using shared randomness, in a way that guarantees that if their

8

guesses are close to the correct distribution, then the probability that they sample the same bit is
high. More precisely, the players share a random number κv ∈ [0, 1] for every node v in the tree,
and each player guesses the next bit following v to be 1, if the player’s estimated probability for
the message being 1 is at least κv. Note that the player that owns v samples the next bit with the
correct probability. It’s not hard to see that the probability of getting inconsistent samples at the

node v is at most |Ov,x − Ov,y|
def
= |Ov,x(0) − Ov,y(0)| + |Ov,x(1) − Ov,y(1)|. Once they have each

sampled from the possible interactions, we shall argue that there is a correct leaf in the protocol
tree, whose distribution is exactly the same as the leaf in the original protocol. This is the leaf that
is obtained by starting at the root and repeatedly taking the edge that was sampled by the owner
of the node. We then show how the players can use hashing and binary search to communicate a
polylogarithmic number of bits with each other to resolve the inconsistencies in their samples and
find this correct path with high probability. In this way, the final outcome will be statistically close
to the distribution of the original protocol. An example run for this protocol is illustrated on Figure
2. The additional interaction cost scales according to the expected number of inconsistencies on
the path to the correct leaf, which we show can be bounded by

√
I · C, where I is the information

content and C is the communication cost of the original protocol.
Recall from the Majority example above that ǫ information can mean that |Ov,x − Ov,y | ≈

√
ǫ.

In fact, the “worst case” example for us is when in each round I/C information is conveyed, leading
to a per-round error of

√

I/C and a total expected number of mistakes of
√

I/C · C =
√

I · C.

2.2 Compression when the inputs are independent

v

u

Figure 3: An illustration of the compression protocol for product distributions. The gray layer
represents the “frontier” of nodes where some fixed amount of information is conveyed in the
original protocol, and which is simulated in one iteration of the compressed protocol. Once the
players agreeon a node u, they compute a new frontier, illustrated here by the black layer.

Our more efficient solution, which gives a protocol with communication complexity within

9

polylogarithmic factors of the information content, only applies when the input distribution µ =
µx × µy is a product distribution. It is illustrated on Figure 3. The idea in this case is not to
simulate the protocol round-per-round at all. Rather, we simulate chunks of the protocol that
convey a constant amount of information each. If we can simulate a portion of the protocol that
conveys a constant (or even 1/poly-log) amount of information using poly-logarithmic number of
bits of communication, then we can simulate the entire protocol using the optimal Õ(I) bits of
communication.

The advantage the players have in the product case is that for each node in the tree, the player
who owns that node knows not only the correct distribution for the next bit, but also knows what
the distribution that the other party has in mind is. They can use this shared knowledge to sample
entire paths according to the distribution that is common knowledge at every step. In general, the
distribution of the sampled path can deviate quite a bit from the correct distribution. However,
we argue that if the information conveyed on a path is small (1/polylog bit), then the difference
between the correct and the approximate probability is constant. After sampling the approximate
bits for the appropriate number of steps so as to cover 1/polylog information, the players can
communicate to estimate the correct probability with which this node was supposed to occur. The
players can then either accept the sequence or resample a new sequence in order to get a final
sample that behaves in a way that is close to the distribution of the original protocol.

There are several technical challenges involved in getting this to work. The fact that the inputs
of the players are independent is important for the players to decide how many messages the players
should try to sample at once to get to the frontier where 1/polylog bits of information have been
revealed. When the players’ inputs are dependent, they cannot estimate how many messages they
should sample before the information content becomes too high, and we are unable to make this
approach work.

3 Preliminaries

Notation. We reserve capital letters for random variables and distributions, calligraphic letters
for sets, and small letters for elements of sets. Throughout this paper, we often use the notation |b
to denote conditioning on the event B = b. Thus A|b is shorthand for A|B = b. Given a sequence
of symbols A = A1, A2, . . . , Ak, we use A≤j denote the prefix of length j.

We use the standard notion of statistical/total variation distance between two distributions.

Definition 3.1. Let D and F be two random variables taking values in a set S. Their statistical

distance is

|D − F | def
= max

T ⊆S
(|Pr[D ∈ T] − Pr[F ∈ T]|) =

1

2

∑

s∈S
|Pr[D = s] − Pr[F = s]|

If |D − F | ≤ ǫ we shall say that D is ǫ-close to F . We shall also use the notation D
ǫ≈ F to mean

D is ǫ-close to F .

3.1 Information Theory

Definition 3.2 (Entropy). The entropy of a random variable X is H(X)
def
=
∑

x Pr[X = x] log(1/Pr[X =
x]). The conditional entropy H(X|Y) is defined to be Ey∈

R
Y [H(X|Y = y)].

10

Fact 3.3. H(AB) = H(A) + H(B|A).

Definition 3.4 (Mutual Information). The mutual information between two random variables
A,B, denoted I(A;B) is defined to be the quantity H(A) − H(A|B) = H(B) − H(B|A). The
conditional mutual information I(A;B|C) is H(A|C) − H(A|BC).

In analogy with the fact that H(AB) = H(A) + H(B|A),

Proposition 3.5. Let C1, C2,D,B be random variables. Then

I(C1C2;B|D) = I(C1;B|D) + I(C2;B|C1D).

The previous proposition immediately implies the following:

Proposition 3.6 (Super-Additivity of Mutual Information). Let C1, C2,D,B be random variables

such that for every fixing of D, C1 and C2 are independent. Then

I(C1;B|D) + I(C2;B|D) ≤ I(C1C2;B|D).

We also use the notion of divergence, which is a different way to measure the distance between
two distributions:

Definition 3.7 (Divergence). The informational divergence between two distributions is D (A||B)
def
=

∑

x A(x) log(A(x)/B(x)).

For example, if B is the uniform distribution on {0, 1}n then D (A||B) = n − H(A).

Proposition 3.8. D (A||B) ≥ |A − B|2.

Proposition 3.9. Let A,B,C be random variables in the same probability space. For every a in

the support of A and c in the support of C, let Ba denote B|A = a and Bac denote B|A = a,C = c.
Then I(A;B|C) = Ea,c∈

R
A,C [D (Bac||Bc)]

The above facts imply the following easy proposition:

Proposition 3.10. With notation as in Proposition 3.9, for any random variables A,B,

E
a∈

R
A

[|(Ba) − B|] ≤
√

I(A;B).

Proof.

E
a∈

R
A

[|(Ba) − B|] ≤ E
a∈

R
A

[

√

D (Ba||B)
]

≤
√

E
a∈

R
A

[D (Ba||B)] by convexity

=
√

I(A;B) by Proposition 3.9

11

3.2 Communication Complexity

Let X ,Y denote the set of possible inputs to the two players, who we name Px, Py. In this paper4,
we view a private coins protocol for computing a function f : X × Y → ZK as a binary tree with
the following structure:

• Each node is owned by Px or by Py

• For every x ∈ X , each internal node v owned by Px is associated with a distribution Ov,x

supported on the children of v. Similarly, for every y ∈ Y, each internal node v owned by Py

is associated with a distribution Ov,y supported on the children of v.

• The leaves of the protocol are labeled by output values from ZK .

On input x, y, the protocol π is executed as in Figure 4.

Generic Communication Protocol

1. Set v to be the root of the protocol tree.

2. If v is a leaf, the protocol ends and outputs the value in the label of v. Otherwise, the
player owning v samples a child of v according to the distribution associated with her input
for v and sends a bit to the other player to indicate which child was sampled.

3. Set v to be the newly sampled node and return to the previous step.

Figure 4: A communication protocol.

A public coin protocol is a distribution on private coins protocols, run by first using shared
randomness to sample an index r and then running the corresponding private coin protocol πr.
Every private coin protocol is thus a public coin protocol. The protocol is called deterministic if
all distributions labeling the nodes have support size 1.

Definition 3.11. The communication complexity of a public coin protocol π, denoted CC(π), is
the maximum depth of the protocol trees in the support of π.

Given a protocol π, π(x, y) denotes the concatenation of the public randomness with all the
messages that are sent during the execution of π. We call this the transcript of the protocol. We
shall use the notation π(x, y)j to refer to the j’th transmitted bit in the protocol. We write π(x, y)≤j

to denote the concatenation of the public randomness in the protocol with the first j message bits
that were transmitted in the protocol. Given a transcript, or a prefix of the transcript, v, we write
CC(v) to denote the number of message bits in v (i.e. the length of the communication).

We often assume that every leaf in the protocol is at the same depth. We can do this since if
some leaf is at depth less than the maximum, we can modify the protocol by adding dummy nodes
which are always picked with probability 1, until all leaves are at the same depth. This does not
change the communication complexity.

4The definitions we present here are equivalent to the classical definitions and are more convenient for our proofs.

12

Definition 3.12 (Communication Complexity notation). For a function f : X × Y → ZK , a
distribution µ supported on X × Y, and a parameter ρ > 0, Dµ

ρ (f) denotes the communication
complexity of the cheapest deterministic protocol for computing f on inputs sampled according to
µ with error ρ. Rρ(f) denotes the cost of the best randomized public coin protocol for computing
f with error at most ρ on every input.

We shall use the following simple fact, first observed by Yao:

Fact 3.13 (Yao’s Min-Max). Rρ(f) = maxµ Dµ
ρ (f).

Recall that the information content ICµ(π) of a protocol π is defined to be I(π(X,Y);X|Y) +
I(π(X,Y);Y |X).

Remark 3.14 (Information content of private vs. public coins protocols.). Another way to view
the difference between public coins and private coins protocols is that the public randomness is
considered part of the protocol’s transcript. But even if the randomness is short compared to the
overall communication complexity, making it public can have a dramatic effect on the information
content of the protocol. (As an example, consider a protocol where one party sends a message
of x ⊕ r where x is its input and r is random. If the randomness r is private then this message
has zero information content. If the randomness is public then the message completely reveals
the input. This protocol may seem trivial since its communication complexity is larger than the
input length, but in fact we will be dealing with exactly such protocols, as our goal will be to
“compress” communication of protocols that have very large communication complexity, but very
small information content.)

3.3 Finding differences in inputs

We use the following lemma of Feige et al. [FPRU94]:

Lemma 3.15 ([FPRU94]). There is a randomized public coin protocol τ with communication com-

plexity O(log(k/ǫ)) such that on input two k-bit strings x, y, it outputs the first index i ∈ [k] such

that xi 6= yi with probability at least 1 − ǫ, if such an i exists.

For completeness, we include the proof (based on hashing) in Appendix C.

4 Proof of the direct sum theorem

In this section, we prove Theorem 1.4, showing a direct sum for distributional communication
complexity even in the case where the input distribution is not necessarily a product distribution.
By Yao’s minimax principle, for every function f , Rρ(f) = maxµ Dµ

ρ (f). Thus Theorem 1.6 implies
Theorem 1.4 and Theorem 1.9 implies Theorem 1.8. So we shall focus on proving Theorem 1.6 and
its XOR Lemma analaog Theorem 1.9.

By Theorem 1.5, the main step to establish Theorem 1.6 is to give an efficient simulation of a
protocol with small information content by a protocol with small communication complexity. We
shall thus prove

13

Theorem 1.2 (Restated). There is a universal constant c such that for every distribution µ,

every protocol π, and every ǫ > 0, there exists functions πx, πy, and a protocol τ such that

|πx(X, τ(X,Y)) − π(X,Y)| < ǫ, Pr[πx(X, τ(X,Y)) 6= πy(Y, τ(X,Y))] < ǫ and

CC(τ) ≤ c
√

CC(π) · ICµ(π)
log(CC(π)/ǫ)

ǫ
.

Proof of direct sum theorem from Theorem 1.2. Before proving Theorem 1.2, let’s see
how we can use it to get our main result (Theorem 1.6). Let π be any protocol computing fn on
inputs drawn from µn with probability of error less than ρ. Then by Theorem 1.5, there exists a
protocol τ1 computing f on inputs drawn from µ with error at most ρ with CC(τ1) ≤ CC(π) and
ICµ(τ1) ≤ 2CC(π)/n. Next, applying Theorem 1.2 to the protocol τ1 gives that there must exist a
protocol τ2 computing f on inputs drawn from µ with error at most ρ + α and

CC(τ2) ≤ O

(

√

CC(τ1)ICµ(τ1) log(CC(τ1)/α)/α

)

= O
(

√

CC(π)CC(π)/n log(CC(π)/α)/α
)

= O

(

CC(π) log(CC(π)/α)/α√
n

)

This proves Theorem 1.6.

Proof of the XOR Lemma. The proof for Theorem 1.9 (XOR Lemma for distributional com-
plexity) is very similar. First, we show an XOR-analog of Theorem 1.5:

Theorem 4.1. For every distribution µ, there exists a protocol τ computing f with probability of

error ρ over the distribution µ with CC(τ) ≤ D
µn

ρ (f+n) + 2 log K such that if τ ′ is the protocol that

is the same as τ but stops running after D
µn

ρ (f+n) message bits have been sent, then ICµ(τ ′) ≤
2Dµn

ρ (fn+)
n .

Now let π be any protocol computing f+n on inputs drawn from µn with probability of error
less than ρ. Then by Theorem 4.1, there exists a protocol τ1 computing f on inputs drawn from
µ with error at most ρ with CC(τ1) ≤ CC(π) + 2 log K and such that if τ ′

1 denotes the first CC(π)
bits of the message part of the transcript, ICµ(τ ′

1) ≤ 2CC(π)/n. Next, applying Theorem 1.2 to the
protocol τ ′

1 gives that there must exist a protocol τ ′
2 simulating τ ′

1 on inputs drawn from µ with
error at most ρ + α and

CC(τ ′
2) ≤ O

(

√

CC(τ ′
1)ICµ(τ ′

1) log(CC(τ ′
1)/α)/α

)

= O
(

√

CC(π)CC(π)/n log(CC(π)/α)/α
)

= O

(

CC(π) log(CC(π)/α)/α√
n

)

Finally we get a protocol for computing f by first running τ ′
2 and then running the last 2 log K

bits of π. Thus we must have that O
(

CC(π) log(CC(π)/α)/α√
n

)

+ 2 log K ≤ Dµ
ρ+α(f), as in the theorem.

14

5 Reduction to Small Information Content

We now prove Theorems 1.5 and 4.1, showing that the existence of a protocol with communication
complexity C for fn (or f+n) implies a protocol for f with information content roughly C/n.

Theorem 1.5 (Restated). For every µ, f, ρ there exists a protocol τ computing f on inputs drawn

from µ with probability of error at most ρ and communication at most D
µn

ρ (fn) such that ICµ(τ) ≤
2Dµn

ρ (fn)
n .

Theorem 4.1 (Restated). For every distribution µ, there exists a protocol τ computing f with

probability of error ρ over the distribution µ with CC(τ) ≤ D
µn

ρ (f+n) + 2 log K such that if τ ′ is the

protocol that is the same as τ but stops running after D
µn

ρ (f+n) message bits have been sent, then

ICµ(τ ′) ≤ 2Dµn

ρ (fn+)
n .

The key idea involved in proving the above theorems is a way to split dependencies between
the inputs that arose in the study of lowerbounds for the communication complexity of disjointness
and in the study of parallel repetition [KS92, Raz92, Raz95].

Proof. Fix µ, f, n, ρ as in the statement of the theorems. We shall prove Theorem 1.5 first.
Theorem 4.1 will easily follow by the nature of our proof. To prove Theorem 1.5, we show how to
use the best protocol for computing fn to get a protocol with small information content computing
f . Let π be a deterministic protocol with communication complexity D

µn

ρ (fn) computing fn with
probability of error at most ρ.

Let (X1, Y1), . . . , (Xn, Yn) denote random variables distributed according to µn. Let π(Xn, Y n)
denote the random variable of the transcript (which is just the concatenation of all messages, since
this is a deterministic protocol) that is obtained by running the protocol π on inputs (X1, Y1), . . . ,
(Xn, Yn). We define random variables W = W1, . . . ,Wn where each Wj takes value in the disjoint
union X ⊎ Y so that each Wj = Xj with probability 1/2 and Wj = Yj with probability 1/2. Let
W−j denote W1, . . . ,Wj−1,Wj+1, . . . ,Wn.

Our new protocol τ shall operate as in Figure 5. Note the distinction between public and private

randomness. This distinction make a crucial difference in the definition of information content, as
making more of the randomness public reduces the information content of a protocol.

The probability that the protocol τ makes an error on inputs sampled from µ is at most the
probability that the protocol π makes an error on inputs sampled from µn. It is also immediate
that CC(τ) = CC(π). All that remains is to bound the information content ICµ(τ). We do this by
relating it to the communication complexity of π.

To simplify notation, below we will use π to denote π(X,Y) when convenient.

Dµn

ρ (fn) ≥ CC(π) ≥ I(X1 · · ·XnY1 · · ·Yn;π|W) ≥
n
∑

j=1

I(XjYj ;π|W) = nI(XJYJ ;π|WJ),

where the last inequality follows from Proposition 3.6. Next observe that the variables JW−J are

15

Protocol τ

Public Randomness Phase :

1. The players sample j, w−j ∈
R

J,W−J using public randomness.

Private Randomness Phase :

1. Px sets xj = x, Py sets yj = y.

2. For every i 6= j, Px samples Xi conditioned on the value of w−j .

3. For every i 6= j, Py samples Yi conditioned on the value of w−j .

4. The players simulate π on the inputs x1, . . . , xn, y1, . . . , yn and output the j’th output
of π.

Figure 5: A protocol simulating π

independent of XJ , YJ ,WJ . Thus we can write

I(XJYJ ;π|JW) = I(XJYJ ;π|JWJW−J) + I(XJYJ ;JW−J |WJ)

= I(XJYJ ;JW−Jπ|WJ)

= I(XY ;JW−Jπ|WJ)

=
I(XY ;JW−Jπ|XJ) + I(XY ;JW−Jπ|YJ)

2

=
I(Y ;JW−Jπ|XJ) + I(X;JW−Jπ|YJ)

2
,

where the last equality follows from the fact that XJ determines X and YJ determines Y . This last
quantity is simply the information content of τ . Thus we have shown that CC(π) ≥ (n/2)ICµ(τ) as
required.

Remark 5.1. The analysis above can be easily improved to get the bound ICµ(τ) ≤ CC(τ)/n by
taking advantage of the fact that each bit of the transcript gives information about at most one of
the players’ inputs, but for simplicity we do not prove this here.

This completes the proof for Theorem 1.5. The proof for Theorem 4.1 is very similar. As above,
we let π denote the best protocol for computing f+n on inputs sampled according to µn. Analogous
to τ as above, we define the simulation γ as in Figure 6.

As before, the probability that the protocol γ makes an error on inputs sampled from µ is at
most the probability that the protocol π makes an error on inputs sampled from µn, since there
is an error in γ if and only if there is an error in the computation of z. It is also immediate that
CC(γ) = CC(π) + 2 log K.

Let γ′(X,Y) denote the concatenation of the public randomness and the messages of γ upto
the computation of z. Then, exactly as in the previous case, we have the bound:

ICµ(γ′) ≤ 2CC(γ)/n

16

Protocol γ

Public Randomness Phase :

1. The players sample j, w−j ∈
R

J,W−J using public randomness.

Private Randomness Phase :

1. Px sets xj = x, Py sets yj = y.

2. For every i 6= j, Px samples Xi conditioned on the value of w−j .

3. For every i 6= j, Py samples Yi conditioned on the value of w−j .

4. The players simulate π on the inputs x1, . . . , xn, y1, . . . , yn to compute z ∈ ZK .

5. Px computes
∑

i6=j,wi=yi
f(xi, wi) and sends this sum to Py

6. Py outputs the value of the function as z−∑i6=j,wi=yi
f(xi, wi)−

∑

i6=j,wi=xi
f(wi, yi).

Figure 6: A protocol simulating π

This completes the proof.

6 Protocol compression: the non product case

We now prove our main technical theorem, Theorem 1.2:

Theorem 1.2 (Restated). There is a universal constant c such that for every distribution µ,

every protocol π, and every ǫ > 0, there exists functions πx, πy, and a protocol τ such that

|πx(X, τ(X,Y)) − π(X,Y)| < ǫ, Pr[πx(X, τ(X,Y)) 6= πy(Y, τ(X,Y))] < ǫ and

CC(τ) ≤ c
√

CC(π) · ICµ(π)
log(CC(π)/ǫ)

ǫ
.

6.1 A proof sketch

Here is a high level sketch of the proof. Let µ be a distribution over X ×Y. Let π be a public coin
protocol that does some computation using the inputs X,Y drawn according to µ. Our goal is to
give a protocol τ that simulates π on µ such that5

CC(τ) = O

(

√

CC(π) · ICµ(π) log(CC(π)

)

.

For the sake of simplicity, here we assume that the protocol π has no public randomness. π then
specifies a protocol tree which is a binary tree of depth CC(π) where every non-leaf node w is owned
by one of the players, whose turn is to speak in this node. Each non leaf node has a “0 child” and

5We identify the communication complexity of the protocols π, τ with their expected communication under µ, as
by adding a small error, the two can be related using an easy Markov argument.

17

a “1 child”. For every such node w in the tree and every possible message b ∈ {0, 1} , the X player
gets input x and uses this to define Ow,x(b) as the probability in π that conditioned on reaching
the node w and the input being x, the next bit will be b. The Y player defines Ow,y(b) analogously.
Note that if w is owned by the X player, then Ow,x(b) is exactly the correct probability with which
b is transmitted in the real protocol.

For every such node w, the players use public randomness to sample a shared random number
κw ∈ [0, 1] for every non-leaf node w in the tree. The X player uses these numbers to define the
child Cx(w) for every node w as follows: if Ow,x(1) < κw, Cx(w) is set to the 0 child of w, and is
set to the 1 child otherwise. The Y Player does the same using the values Ow,y(1) (but the same
κw) instead.

Now let v0, . . . , vCC(π) be the correct path in the tree. This is the path where every subsequent
node was sampled by the player that owned the previous node: for every i,

vi+1 =

{

Cx(vi) if X player owns vi

Cy(vi) if Y player owns vi

vCC(π) has the same distribution as a leaf in π was supposed to have, and the goal of the players
will be to identify vCC(π) with small communication.

In order to do this, the X player will compute the sequence of nodes vx
0 , . . . , vx

CC(π) by setting

vx
i+1 = Cx(vx

i). Similarly, the Y player computes the path vy
0 , . . . , vy

CC(π) by setting vy
i+1 = Cy(v

y
i).

Observe that if these two paths agree on the first k nodes, then they must be equal to the correct
path upto the first k nodes.

So far, we have not communicated at all. Now the parties communicate to find the first index i
for which vx

i 6= vy
i . If vi−1 = vx

i−1 = vy
i−1 was owned by the X player, the parties reset the i’th node

in their paths to vx
i . Similarly, if vi−1 was owned by the Y player, the parties reset their i’th node

to be vy
i . In this way, they keep fixing their paths until they have computed the correct path.

Thus the communication complexity of the new protocol is bounded by the number of mistakes
times the communication complexity of finding a single mistake. Every path in the tree is specified
by a CC(π)-bit string, and finding the first inconsistency reduces to the problem of finding the
first difference in two CC(π)-bit strings. A simple protocol of Feige et al [FPRU94] (based on
hashing and binary search) gives protocol for finding this first inconsistency, with communication
only O(log CC(π)). We describe an analyze this protocol in Appendix C. In Appendix 6 we show
how to bound the expected number of mistakes on the correct path in terms of the information
content of the protocol. We show that if we are node vi in the protocol and the next bit has
ǫ information, then the probability that Pr[Cx(vi) 6= Cy(vi)] ≤

√
ǫ. Since the total information

content is ICµ(π), we can use the Cauchy-Schwartz inequality to bound the expected number of
mistakes by

√

CC(π)ICµ(π).

6.2 The actual proof

In order to prove Theorem 1.2, we consider the protocol tree T for πr, for every fixing of the public
randomness r. If R is the random variable for the public randomness used in π, we have that

Claim 6.1. ICµ(π) = ER [ICµ(πR)]

18

Proof.

ICµ(π) = I(π(X,Y);X|Y) + I(π(X,Y);Y |X)

= I(RπR(X,Y);X|Y) + I(RπR(X,Y);Y |X)

= I(R;X|Y) + I(R;Y |X) + I(πR(X,Y);X|Y R) + I(πR(X,Y);Y |XR)

= I(πR(X,Y);X|Y R) + I(πR(X,Y);Y |XR)

= E
R

[ICµ(πR)]

It will be convenient to describe protocol πr in a non-standard, yet equivalent way in Figure 7.

Protocol πr

Sampling Phase :

1. For every non-leaf node w in the tree, the player who owns w samples a child according
to the distribution given by her input and the public randomness r. This leaves each
player with a subtree of the original protocol tree, where each node has out-degree 1
or 0 depending on whether or not it is owned by the player.

Path Finding Phase :

1. Set v to be the root of the tree.

2. If v is a leaf, the computation ends with the value of the node. Else, the player to
whom v belongs communicates one bit to the other player to indicate which of the
children was sampled.

3. Set v to the sampled child and return to the previous step.

Figure 7: π restated

For some error parameters β, γ, we define a randomized protocol τβ,γ that will simulate π and
use the same protocol tree. The idea behind the simulation is to avoid communicating by guessing
what the other player’s samples look like. The players shall make many mistakes in doing this, but
they shall then use Lemma 3.15 to correct the mistakes and end up with the correct transcript.
Our simulation is described in Figure 8.

Define πx(x, τβ,γ(x, y)) (resp. πy(y, τβ,γ(x, y))) to be leaf of the final path computed by Px (resp.
Py) in the protocol τβ,γ (see Figure 8). The definition of the protocol τβ,γ implies immediately the
following upper bound on its communication complexity

CC(τβ,γ) = O(
√

CC(π) · ICµ(π) log(CC(π)/β)/γ) . (1)

Let V = V0, . . . , VCC(π) denote the “right path” in the protocol tree of τβ,γ . That is, every i,
Vi+1 = 0 if the left child of V≤i is sampled by the owner of V≤i and Vi+1 = 1 otherwise. Observe that

19

Protocol τβ,γ

Public Sampling Phase :

1. Sample r according to the distribution of the public randomness in π.

Correlated Sampling Phase :

1. For every non-leaf node w in the tree, let κw be a uniformly random element of [0, 1]
sampled using public randomness.

2. On input x, y, player Px (resp. Py) defines the tree Tx (resp. Ty) in the fol-
lowing way: for each node w, Px (resp. Py) includes the edge to the left child
if Pr[πr(X,Y) reaches the left child|πr(X,Y) reaches w and X = x] > κw (resp. if
Pr[πr(X,Y) reaches the left child|πr(X,Y) reaches w and Y = y] > κw). Otherwise,
the right child is picked.

Path Finding Phase :

1. Each of the players computes the unique path in their trees that leads from the root
to a leaf. The players then use Lemma 3.15, communicating O(log(n/β)) bits to
find the first node at which their respective paths differ, if such a node exists. The
player that does not own this node corrects this edge and recomputes his path. They
repeatedly correct their paths in this way

√

CC(π) · ICµ(π)/γ times.

Figure 8: The simulation of π

this path has the right distribution, since every child is sampled with exactly the right conditional
probability by the corresponding owner. That is, we have the following claim:

Claim 6.2. For every x, y, r, the distribution of V |xyr as defined above is the same as the distri-

bution of the sampled transcript in the protocol π.

This implies in particular, that

I(X;V |rY) + I(Y ;V |rX) = ICµ(πr) .

Given two fixed trees Tx,Ty as in the above protocol, we say there is a mistake at level i if the
out-edges of Vi−1 are inconsistent in the trees. We shall first show that the expected number of
mistakes that the players make is small.

Lemma 6.3. E [# of mistakes in simulating πr|r] ≤
√

CC(π) · ICµ(πr).

Proof. For i = 1, . . . ,CC(π), we denote by Cir the indicator random variable for whether or not a

mistake occurs at level i in the protocol tree for πr, so that the number of mistakes is
∑CC(π)

i=1 Cir.
We shall bound E [Cir] for each i. A mistake occurs at a vertex w at depth i exactly when

Pr[Vi+1 = 0|x ∧ V≤i = w] ≤ κw < Pr[Vi+1 = 0|y ∧ V≤i = w] or Pr[Vi+1 = 0|y ∧ V≤i = w] ≤ κw <
Pr[Vi+1 = 0|x ∧ V≤i = w]. Thus a mistake occurs at v≤i with probability at most |(Vi|xv<ir) −
(Vi|yv<ir)|.

20

If v<i is owned by Px, then Vi|xv<ir has the same distribution as Vi|xyv<ir; If v<i is owned by Py,
then Vi|yv<ir has the same distribution as Vi|xyv<ir. Using Proposition 3.8 and Proposition 3.9,
we have

E [Cir]

≤ E
xyv<i∈R

XY V<i

[|(Vi|xv<ir) − (Vi|yv<ir)|]

≤ E
xyv<i∈R

XY V<i

[max{|(Vi|xyv<ir) − (Vi|yv<ir)| , |(Vi|xyv<ir) − (Vi|xv<ir)|]

≤ E
xyv<i∈R

XY V<i

[

√

D (Vi|xyv<ir||Vi|yv<ir) + D (Vi|xyv<ir||Vi|xv<ir)
]

By Proposition 3.8

≤
√

E
xyv<i∈R

XY V<i

[D (Vi|xyv<ir||Vi|yv<ir) + D (Vi|xyv<ir||Vi|xv<ir)] by convexity

=
√

I(X;Vi|Y V<ir) + I(Y ;Vi|XV<ir) by Proposition 3.9

Finally we apply the Cauchy Schwartz inequality to conclude that

E





CC(π)
∑

i=1

Cir



 =

CC(π)
∑

i=1

E [Cir]

≤

√

√

√

√CC(π)

CC(π)
∑

i=1

E [Cir]
2

≤

√

√

√

√CC(π)

CC(π)
∑

i=1

I(X;Vi|Y V<ir) + I(Y ;Vi|XV<ir)

=
√

CC(π)
(

I(X;V CC(π)|Y r) + I(Y ;V CC(π)|Xr)
)

=
√

CC(π) · ICµ(πr)

We then get that overall the expected number of mistakes is small:

Lemma 6.4. E [# of mistakes in simulating π] ≤
√

CC(π) · ICµ(π).

Proof.

E [# of mistakes in simulating π] = E
R

[# of mistakes in simulating πR]

≤ E
R

[

√

CC(π) · ICµ(πR)

]

≤
√

E
R

[CC(π) · ICµ(πR)]

=
√

CC(π) · ICµ(π)

21

Lemma 6.5. The distribution of the leaf sampled by τβ,γ is γ + β

√
CC(π)·ICµ(π)

γ -close to the distri-

bution of the leaf sampled by π.

Proof. We show that in fact the probability that both players do not finish the protocol with the

leaf VCC(π) is bounded by γ + β

√
CC(π)·ICµ(π)

γ . This follows from a simple union bound — the leaf
VCC(π) can be missed in two ways: either the number of mistakes on the correct path is larger than
√

CC(π) · ICµ(π)/γ (probability at most γ by Lemma 6.4 and Markov’s inequality) or our protocol
fails to detect all mistakes (for each mistake this happens with probability β).

We set β = γ2/CC(π). Then, since CC(π) ≥ ICµ(π), we get that the protocol errs with probabil-
ity at most ρ + 2γ. On the other hand, by (1), the communication complexity of the protocol is at
most O(

√

CC(π) · ICµ(π) log(CC(π)/β)/γ) = O(
√

CC(π) · ICµ(π) log(CC(π)/γ)/γ). Setting ǫ = 2γ
proves the theorem.

7 Proofs for the Product Case

In this section we argue how to get a linear bound in the case that µ is a product distribution. We
shall prove Theorem 1.7. Throughout this section we assume that the distribution µ on X,Y is a
product distribution.

7.1 A proof sketch

We start with a rough proof sketch. Given function f , product distribution µ and protocol π, we
want to come up with a protocol τ simulating π such that CC(τ) = Õ(ICµ(π)). We assume that π
is a private coin protocol for simplicity. This µ is a product distribution, we can prove inductively
that if w is owned by the X player, then Ow,y is independent of Y . Thus if a node is owned by the X
player then he knows Ow,y as well as Ow,x (since the input y does not help in computing Ow,x more
than can be learned from the transcript). Hence for every non-leaf node w we denote by Ow the
probability estimate by the party that does not own w. As a technical condition, we will assume
that for every w, Ow,x, Ow,y ∈ 1/2 ± β for β = 1/polylog(CC(π)). This condition can be achieved
for example by re-encoding π so that each party, instead of sending a bit b, sends polylog(CC(π))
random bits such that their majority is b.

For every node w owned by the X player, we define the divergence at w, denoted by Dw as
D (Ow,x||Ow,y) where D (p||q) = p log(p/q) + (1− p) log((1− p)/(1− q)) equals the divergence (also
known as the Kullback Leibler distance) between the p-biased coin and the q-biased coin. Given
a node v, we define Bv to be the set of descendants w of v such that if we sum up Dw′ for all
intermediate nodes w′ on the path from v to w we get a total < β but adding Dw makes the total
at least β or w is a leaf. We define Bv to be the distribution over Bv that is induced by following
the probabilities Ow′ along the path. Note that this distribution is known to both parties. We also
define Bvx, Bvy to be the corresponding distributions where each player uses the actual probabilities
on the nodes he owns.

The protocol proceeds as follows: (initially v is set to the root of the tree, t below is some large
constant)

1. Both parties use their shared randomness to obtain a random element w according to the
distribution Bv. (This involves first sampling a random leaf and then using binary search to

22

find the first location in which the divergence surpasses β.)

2. The X player sends a bit a1 that equals 1 with probability min{1, Bvx(w)/(tBv(w)}.

3. The Y player sends a bit a2 that equals 1 with probability min{1, Bvy(w)/(tBv(w)}.

4. If a1 = a2 = 1 then they set v = w. If v is a leaf they end the protocol, otherwise to go back
to Step 1.

To get a rough idea why this protocol makes sense, consider the case that all the nodes in Bv

are two levels below v, with the first node (i.e., v) owned by the X player, and the node in the
intermediate level owned by the Y player. For a node w ∈ Bv, let B(w) be the true probability of
arriving at w, and let B̃(w) = Bv(w) be the estimated probability. Fixing w, we write B(w) = B1B2

and B̃(w) = B̃1B̃2, where Bi denotes the true probability that step i is taken according to w, and
B̃i denotes this probability as estimated by the party that does not own the node.

The probability that w is output at the end of Step 1 is B̃1B̃2. Now assume that the threshold
t is set high enough so that we can assume that tBv(w) > Bvx(w), Bvy(y) with high probability. In
this case the probability that w is accepted equals

Pr[a1 = 1]Pr[a2 = 1] =

(

B1B̃2

tB̃1B̃2

)(

B̃1B2

tB̃1B̃2

)

=
B1B2

t2B̃1B̃2

(2)

thus the total probability that w is output is B̃1B̃2 times (2) which is exactly its correct probability
B1B2 divided by t2, and hence we get an overhead of t2 steps, but output the right distribution
over w.

7.2 The actual proof.

Again, we prove Theorem 1.7 via a reduction. We start with a protocol π with CC(π) = Dµn

ρ (fn)
such that π computes fn with probability of error at most ρ on inputs sampled according to µn.
Our first step shall be to get a protocol that computes fn but whose messages are smoothed out in
the sense that every bit in the protocol is relatively close to being unbiased. We define a protocol
that is a simulation of π in the following way: for a parameter β that we shall fix later, every time a
player wants to send a bit in π, she instead sends 1000 log(CC(π)/γ)

β2 bits which are each independently

chosen to be the correct value with probability 1/2 + β. The receiving player takes the majority of
the bits sent to reconstruct the intended transmission. By the Chernoff bound, we have that the
probability that any transmission is received incorrectly is at most γ/CC(π). By the union bound,
this means that for every input, the distribution of the simulated transcript is γ-close to the correct
distribution. We have thus argued the following claim:

Claim 7.1. For every f, µ, ρ, γ, there exists a protocol π computing fn with probability of error

ρ + γ on the distribution µ such that

CC(π) = O

(

Dµn

ρ (fn) log(Dµn

ρ (fn)/γ)

β2

)

and for every x, y, v, i we have that

Pr[π(x, y)i+1 = 1|vi] ∈ [1/2 − β, 1/2 + β].

23

In analogy with Theorem 1.5 and Theorem 4.1, Claim 7.1 leads to the following results:

Theorem 7.2 (Reduction to Small Information Content). For every γ, β, µ, f, ρ there exists a

protocol τ computing f on inputs drawn from µ with probability of error at most ρ + γ, such that

CC(τ) ≤ O

(

Dµn

ρ (fn) log(Dµn

ρ (fn)/γ)

β2

)

and

ICµ(τ) ≤ O

(

CC(τ) log CC(τ)

n

)

.

Further, for every x, y, j, t, we have the j’th bit of the messages satisfies

Pr[τ(x, y)j = 1|τ(x, y)≤j−1 = t] ∈ [1/2 − β, 1/2 + β].

For f+n we have the following theorem:

Theorem 7.3 (Reduction to Small Information Content). For every distribution µ, there exists a

protocol τ computing f with probability of error ρ + γ over the distribution µ with

CC(τ) ≤ O

(

Dµn

ρ (f+n) log(Dµn

ρ (f+n)/γ)

β2

)

+ 2 log K

such that if τ ′ is the protocol that simulates all but the last 2 log K bits of τ , then

ICµ(τ ′) ≤ O

(

CC(τ ′) log CC(τ ′)
n

)

Further, for every x, y, j, t, we have the j’th bit of the messages satisfies

Pr[τ ′(x, y)j = 1|τ(x, y)≤j−1 = t] ∈ [1/2 − β, 1/2 + β].

To complete the proof, we need to show how to simulate the protocols τ in the above theorems
with small communication complexity. We shall do this by proving the following theorem:

Theorem 7.4. There exists a constant k such that for every ǫ > 0, if π is a protocol such that for

every x, y, v, i we have that

Pr[π(x, y)i+1 = 1|v≤i] ∈
[

1

2
− 1

k log(CC(π)/ǫ)
,
1

2
+

1

k log(CC(π)/ǫ)

]

Then for every product distribution µ on inputs X,Y there exists a protocol τ and a function p
such that for every x, y and every transcript l of π,

Pr[p(τ(x, y)) = l]

Pr[π(x, y) = l]
≤ exp(O(ǫ))

and the expected communication complexity of τ under the distribution µ is at most

exp(O(ǫ)) · ICµ(π) · k log(CC(π)/ǫ).

We use the above theorems to prove our final theorem about product distributions:

24

Proof of Theorem 1.7. Let α > 0 be the parameter in the statement of Theorem 1.7. We set
γ = α/4, and set ǫ = O(α), in which the constant is small enough so that both exp O(ǫ)’s in
Theorem 7.4 are at most 1 + α/4. Let π be a protocol satisfying the conclusions of Theorem 7.2
with β set to β = 1

k′ log(Dµn

ρ (fn)/ǫ)
for some constant k′. k′ can be chosen to be large enough so that

β =
1

k′ log(Dµn

ρ (fn)/ǫ)
≤ 1

k log(CC(π)/ǫ)

as in Theorem 7.4.
By Theorem 7.4, we get a protocol computing f on the distribution µ with error (ρ+γ) exp(O(ǫ))

and expected communication exp(O(ǫ))Dµn

ρ (fn) polylog(Dµn

ρ (fn)/γ)/n. Markov’s inequality im-
plies that by interrupting the protocol if it runs for too long, we can get a protocol that errs with
probability (ρ+γ) exp(O(ǫ))+λ and has communication complexity exp(O(ǫ))Dµn

ρ (fn) polylog(Dµn

ρ (fn)/γ)/λn.
Set λ = α/4 to prove the theorem.

The proof for Theorem 1.10 is almost exactly the same, so we omit it.

7.3 Proof of Theorem 7.4

It only remains to prove Theorem 7.4. Set β = 1/k log(CC(π)/ǫ). We need the following definition:

Definition 7.5 (Conditional Divergence). Given a protocol π, a prefix v of the transcript and
j ∈ [CC(v)], we define the j’th step divergence cost as

Dπ
x,j(v)

def
= D ((π(x, Y)j |v≤j−1)||(π(X,Y)j |v≤j−1))

Dπ
y,j(v)

def
= D ((π(X, y)j |v≤j−1)||(π(X,Y)j|v≤j−1))

We define the divergence cost for the whole prefix as the sum of the step divergence costs

Dπ
x(v)

def
=

CC(v)
∑

j=1

Dπ
x,j(v), Dπ

y (v)
def
=

CC(v)
∑

j=1

Dπ
y,j(v)

It is easy to check that

E
X,Y,π(X,Y)

[Dπ
X(π(X,Y)) + Dπ

Y (π(X,Y))] = ICµ(π)

Thus the conditional divergence is in some sense a measure of the amount of information revealed
by the relevant prefix of the transcript. Observe that Dπ

x(v) is a function only of x and v. Further,
we have that if the node corresponding to v≤j−1 is owned by x, then Dπ

y,j(v) = 0, since conditioned
on v≤j−1, Y is independent of Vj.

We use the fact that the bits in our protocol are close to uniform to show that the step divergence
is at most O(β) for each step:

Proposition 7.6. For every j, Dπ
x,j(v) and Dπ

y,j(v) are bounded by O(β).

25

Proof. This follows from the fact that all probabilities for each step lie in [1/2 − β, 1/2 + β]. The

worst the divergence between two distributions that lie in this range can be is clearly log
(

1/2+β
1/2−β

)

=

log (1 + O(β)) = O(β).

Next, for every prefix v of the transcript, and inputs x, y, we define a subset of the prefixes of
potential transcripts that start with v, Bvxy in the following way: we include w in Bvxy if and only
if for every w′ that is a strict prefix of w,

max







CC(w′)
∑

j=CC(v)+1

Dπ
x,j(w

′),
‖w′‖
∑

j=CC(v)+1

Dπ
y,j(w

′)







< β,

and we have that w itself is either a leaf or satisfies

max







CC(w)
∑

j=CC(v)+1

Dπ
x,j(w),

‖w‖
∑

j=CC(v)+1

Dπ
y,j(w)







≥ β.

The set Bvxy has the property that every path from v to a leaf of the protocol tree must intersect
exactly one element of Bvxy, i.e. if we cut all paths at the point where they intersect Bvxy, we
get a protocol tree that is a subtree of the original tree. We define the distribution Bvxy on the
set Bvxy as the distribution on Bvxy induced by the protocol π. Namely we sample from Bvxy by
sampling from π(x, y)|v and then taking the unique vertex of Bvxy that the sampled path intersects.
Similarly, we define the distributions Bvx, Bvy , Bv on Bvxy to be the distributions obtained by first
sampling a path according to π(x, Y)|v, π(X, y)|v, π(X,Y)|v and then taking the unique vertices
in Bvxy that these paths intersect. For every transcript w, the players can compute the element of
Bvxy that intersects the path w by communicating 2 log CC(π) bits.

Given, these definitions, we are now ready to describe our simulation protocol. The proto-
col proceeds in rounds. In each round the players shall use rejection sampling to sample some
consecutive part of the transcript.

7.3.1 A single round

The first protocol, shown in Figure 9 assumes that we have already sampled the prefix v. We define
the protocol for some constant t that we shall set later.

Note that Bv(w) =
∏CC(w)

i=CC(v)+1 Pr[π(X,Y)≤i+1 = w≤i+1|π(X,Y)≤i = w≤i]. We write Bx
v (w) to

denote the part of this product that corresponds to nodes sampled by Px, and By
v (w) to denote the

part that corresponds to nodes sampled by Py. Thus Bv = Bx
v By

v . We use Bx
vx, By

vx etc to denote
the analogous functions. Then note that since X,Y are independent, we have that By

vx = By
v . Thus

we get

(

Bvx

Bv

)(

Bvy

Bv

)

=

(

By
vBx

vxy

Bx
v By

v

)(

By
vxyBx

v

Bx
v By

v

)

=
Bx

vxyB
y
vxy

Bx
v By

v
=

Bvxy

Bv
(3)

This suggests that our protocol should pick a transcript distributed according to Bvxy. We shall
argue that the subsequent prefix of the transcript sampled by the protocol in Figure 9 cannot be
sampled with much higher probability than what it is sampled with in the real distribution. Let
B′

vxy denote the distribution of the accepted prefix of τv,t.

26

Protocol τv,t

1. Both players use public randomness to sample a path according to π(X,Y)|v and com-
municate 2 log CC(π) bits to sample an element w of Bvxy according to the distribution
Bv.

2. Px samples a bit a1 which is 1 with probability

min

{

Bvx(w)

tBv(w)
, 1

}

.

3. Py samples a bit a2 which is 1 with probability

min

{

Bvy(w)

tBv(w)
, 1

}

.

4. If both a1 and a2 were 1, they accept w. Else they repeat the protocol.

Figure 9: The protocol to sample a subsequent part of the transcript

Claim 7.7 (No sample gets undue attention). For every prefix w,

B′
vxy(w)/Bvxy(w) ≤ 1 + 2 exp

(

−Ω

(

(log t − O(β))2

β

))

We shall also show that the expected communication complexity of this protocol is not too high:

Claim 7.8 (Small number of rounds). The expected communication complexity of τv is at most

O(t2)

1 − exp
(

−Ω
(

(log t−O(β))2

β

))

Claim 7.7 and Claim 7.8 will follow from the following claim:

Claim 7.9.

Pr
w∈

R
Bvxy

[

Bvx(w)

Bv(w)
≥ t

]

≤ exp

(

−Ω

(

(log t − O(β))2

β

))

, Pr
w∈

R
Bvxy

[

Bvy(w)

Bv(w)
≥ t

]

≤ exp

(

−Ω

(

(log t − O(β))2

β

))

Let us first argue that Claim 7.7 follows from Claim 7.9.

Proof of Claim 7.7. Set a to be the function that maps any w ∈ Bvxy to min
{

(1/t)Bvx(w)
Bv(w) , 1

}

·

min
{

(1/t)
Bvy(w)
Bv(w) , 1

}

. Set a′ = (1/t)Bvx(w)
Bv(w) (1/t)

Bvy(w)
Bv(w) . Then clearly a′(w) ≥ a(w) for every w.

Applying Equation 3, we get

a′ = (1/t2)

(

Bvx

Bv

)(

Bvy

Bv

)

= (1/t2)
Bvxy

Bv

27

Thus Bvxy = βa′ · Bv for some constant β. By Proposition B.3, applied to a′, a and the
distributions D = Bvxy,D

′ = B′
vxy, we have that for every w,

B′
vxy(w)

Bvxy(w)
≤ 1

1 − Prw∈
R

Bvxy
[a′(w) > a(w)]

On the other hand, by the union bound and Claim 7.9,

Pr
w∈

R
Bvxy

[a′(w) > a(w)] ≤ Pr
w∈

R
Bvxy

[

Bvx(w)

Bv(w)
> t ∨ Bvy(w)

Bv(w)
> t

]

≤ 2 exp

(

−Ω

(

(log t − O(β))2

β

))

Since 1/(1 − z) ≤ 1 + O(z) for z ∈ (0, 1/10), we get Claim 7.7.

Now we show Claim 7.8 assuming Claim 7.9.

Proof of Claim 7.8. We shall use Proposition B.4. We need to estimate the probability that the
first round of τv,t accepts its sample. This probability is exactly

∑

w∈Bvxy

Bv(w)min

{

(1/t)
Bvx(w)

Bv(w)
, 1

}

· min

{

(1/t)
Bvy(w)

Bv(w)
, 1

}

Let A ⊂ Bvxy denote the set {w : Bvx(w)
Bv(w) ≤ t ∧ Bvy(w)

Bv(w) ≤ t}. Then we see that the above sum
can be lower bounded:

∑

w∈Bvxy

Bv(w)min

{

(1/t)
Bvx(w)

Bv(w)
, 1

}

· min

{

(1/t)
Bvy(w)

Bv(w)
, 1

}

≥ (1/t2)
∑

w∈A

Bv(w)

(

Bvx(w)

Bv(w)

)(

Bvy(w)

Bv(w)

)

= (1/t2)
∑

w∈A

Bvxy,

where the last equality follows from Equation 3.

Finally, we see that Claim 7.9 implies that
∑

w∈A Bvxy ≥ 1−exp
(

−Ω
(

(log t−O(β))2

β

))

. Proposition B.4

then gives the bound we need.

Next we prove Claim 7.9. To do this we shall need to use a simple generalization of Azuma’s
inequality, which we prove in Appendix A.

Proof of Claim 7.9. Let W be a random variable distributed according to Bvxy. Set ZCC(v)+1, . . . , ZCC(π)

to be real valued random variables such that if i ≤ CC(W),

Zi = log

(

Pr[π(x, Y)i = Wi|vW≤i−1]

Pr[π(X,Y)i = W≤i|vW≤i−1]

)

.

If i > CC(W), set Zi = 0. Observe that E [Zi|w≤i−1] = Dπ
x,i(w). We also have that

CC(π)
∑

i=CC(v)+1

Zi = log

(

Pr[π(x, Y)CC(w) = w|v]

Pr[π(X,Y)CC(w) = w|v]

)

= log

(

Bvx(w)

Bv(w)

)

(4)

28

Next set Ti = Zi − E [Zi|Zi−1, . . . , Z1]. Note that E [Ti|Ti−1, . . . , T1] = 0 (in fact the stronger
condition that E [Ti|Zi−1, . . . , Z1] = 0 holds). For every w ∈ Bvxy, we have that

sup(Ti|w≤i−1) ≤ max

{

log

(

Pr[π(x, Y)i = 0|w≤i−1]

Pr[π(X,Y)i = 0|w≤i−1]

)

, log

(

Pr[π(x, Y)i = 1|w≤i−1]

Pr[π(X,Y)i = 1|w≤i−1]

)}

inf(Ti|w≤i−1) ≥ min

{

log

(

Pr[π(x, Y)i = 0|w≤i−1]

Pr[π(X,Y)i = 0|w≤i−1]

)

− Dπ
x,i(w), log

(

Pr[π(x, Y)i = 1|w≤i−1]

Pr[π(X,Y)i = 1|w≤i−1]

)

− Dπ
x,i(w)

}

By Proposition 3.8 and using the fact that π(x, Y) = 1 ∈ [1/2 − β, 1/2 + β] we can bound

sup(Ti|w≤i−1) ≤ log





1/2 − β +
√

Dπ
x,i(w)

1/2 − β





= log
(

1 + O
(√

Dπ
x,i(w)

))

= O
(√

Dπ
x,i(w)

)

(5)

inf(Ti|w≤i−1) ≥ log





1/2 − β

1/2 − β +
√

Dπ
x,i(w)



− Dπ
x,i(w)

= log
(

1 − O
(√

Dπ
x,i(w)

))

= −O
(√

Dπ
x,i(w)

)

, (6)

as long as β < 1/10.
Equation 5 and Equation 6 imply that for w ∈ Bvxy,

CC(π)
∑

i=CC(v)+1

(sup(Ti) − inf(Ti)|w≤i−1)
2 ≤

CC(π)
∑

i=CC(v)+1

O(Dπ
x,i(w)) = O(β) (7)

For every w,





CC(π)
∑

i=CC(v)+1

Ti



 |w =





CC(π)
∑

i=CC(v)+1

Zi



 |w −
CC(π)
∑

i=CC(v)+1

E [Zi|w≤i−1]

=

CC(w)
∑

i=CC(v)+1

log

(

Pr[π(x, Y)i = wi|vπ(x, Y)≤i−1 = w≤i−1]

Pr[π(X,Y)i = wi|π(X,Y)≤i−1 = vw≤i−1]

)

−
CC(w)
∑

i=CC(v)+1

Dπ
x,i(w)

≥ log

(

Bvx(w)

Bv(w)

)

− O(β) (8)

where the last inequality follows from the definition of Bvxy, Proposition 7.6 and Equation 4.

29

Thus we can use Theorem A.1 to bound

Pr
w∈

R
Bvxy

[

Bvx(w)

Bv(w)
≥ t

]

≤ Pr
w∈

R
Bvxy

[

log

(

Bvx(w)

Bv(w)

)

≥ log t

]

≤ Pr





CC(π)
∑

i=CC(v)+1

Ti ≥ log t − O(β)



 by Equation 8

≤ exp



−Ω





(log t − O(β))2

∑CC(π)
i=CC(v)+1(sup(Ti) − inf(Ti)|w≤i−1)2









≤ exp

(

−Ω

(

(log t − O(β))2

β

))

by Equation 7

7.3.2 The whole protocol

Our final protocol for computing f is shown in Figure 10.

Protocol τt

1. The players publicly sample the public randomness v ∈
R

R for π.

2. The players repeatedly run τv,t to get a new prefix v. They stop only when they reach a
leaf of the protocol tree for π.

Figure 10: The protocol to sample a subsequent part of the transcript

We first argue that our simulation returns the correct answer with decent probability. We shall
actually argue that the probability for any returned transcript does not increase by too much. To
ease notations, let us set

α
def
= exp

(

−Ω

(

(log t − O(β))2

β

))

Set t to be a large enough constant so that α = exp(−Ω(1/β)) = exp(−Ω(k log(CC(π)/ǫ))). Set
k to be large enough so that α ≤ ǫ/CC(π).

Let L denote the random variable of the sampled transcript returned by τt. Then by Claim 7.7,
we get that for every leaf l,

Pr[L = l|xy]

Pr[π(x, y) = l]
≤ (1 + α)CC(π) = exp(O(ǫ)) (9)

30

Next we bound the expected communication of the protocol. First observe that if the protocol
accepts a leaf l, then the protocol must have involved O((Dπ

x(l) + Dπ
y (l))/β) rounds. The expected

number of bits communicated in each of these rounds is independent of l by Proposition B.1, and is
t2

1−α by Claim 7.8. Thus the expected communication complexity of the protocol can be bounded

E
x,y,l∈

R
X,Y,L

[

O

(

(Dπ
x(l) + Dπ

y (l))
t2

β(1 − α)

)]

=
O(t2)

β(1 − α)
E

x,y∈
R

X,Y

[

∑

l

Pr[L = l|x, y](Dπ
x(l) + Dπ

y (l))

]

≤ O(1/β) E
x,y∈

R
X,Y

[

∑

l

exp(O(ǫ)) Pr[π(x, y) = l](Dπ
x(l) + Dπ

y (l))

]

by Equation 9

=
exp(O(ǫ))

β
E

X,Y
[Dπ

X(π(X,Y)) + Dπ
Y (π(X,Y))]

=
exp(O(ǫ))

β
· ICµ(π)

This completes the proof of Theorem 7.4.

8 Open problems and final thoughts

The main problem that remains open is whether optimal, or near-optimal compression is possible
for protocols in the general setting.

Open Problem: Is there a generic way to convert any two-party protocol π over a general distri-
bution µ into a protocol that uses only ICµ(π) polylog(CC(π)) bits of communication?

An affirmative answer to this problem would immediately yield an optimal direct-sum theorem
for randomized communication complexity, showing that the communication complexity of fn is
Õ(n) times as high as the communication complexity of f . Curiously enough, it turns out [BR]
that the converse is true as well, and the problem above is complete for randomized communication
direct sum — one can show that if there is no such compression scheme, then there is a (partial)
function U for which a direct sum theorem fails to hold.6 In this function U , each player gets as
input a protocol tree, as well as the probabilities for all the nodes he owns, and the output is simply
the output of the protocol. Unfortunately, by design, information theoretic techniques seem to be
powerless in proving lower bounds for U .

Acknowledgements

We thank Noga Alon, Emanuel Milman, Alex Samorodnitsky, Avi Wigderson and Amir Yehudayoff
for useful discussions.

6In a partial function / promise problem the protocol only needs to compute the function if the pair of inputs
come from some subset. Our results in this paper for non-product distributions carry over to promise problem as
well.

31

References

[BR] M. Braverman and A. Rao. Work in progress.

[BYJKS04] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. Journal of Computer and

System Sciences, 68(4):702–732, 2004.

[CSWY01] A. Chakrabarti, Y. Shi, A. Wirth, and A. Yao. Informational complexity and the direct
sum problem for simultaneous message complexity. In B. Werner, editor, Proceedings

of the 42nd Annual IEEE Symposium on Foundations of Computer Science, pages
270–278, Los Alamitos, CA, Oct. 14–17 2001. IEEE Computer Society.

[CT91] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley series in
telecommunications. J. Wiley and Sons, New York, 1991.

[FKNN91] T. Feder, E. Kushilevitz, M. Naor, and N. Nisan. Amortized communication com-
plexity. SIAM Journal on Computing, 24(4):736–750, 1995. Prelim version by Feder,
Kushilevitz, Naor FOCS 1991.

[FPRU94] U. Feige, D. Peleg, P. Raghavan, and E. Upfal. Computing with noisy information.
SIAM Journal on Computing, 23(5):1001–1018, 1994.

[GF81] G. Galbiati and M. Fischer. On the complexity of 2-output boolean networks. Theor.

Comput. Sci., 16:177–185, 1981.

[HJMR07] P. Harsha, R. Jain, D. A. McAllester, and J. Radhakrishnan. The communication
complexity of correlation. In IEEE Conference on Computational Complexity, pages
10–23. IEEE Computer Society, 2007.

[JHM+98] M. Jerrum, M. Habib, C. McDiarmid, J. L. Ramirez-Alfonsin, and B. Reed. Proba-

bilistic Methods for Algorithmic Discrete Mathematics, volume 16 of Algorithms and

Combinatorics. Springer-Verlag, 1998.

[JRS03] R. Jain, J. Radhakrishnan, and P. Sen. A direct sum theorem in communication
complexity via message compression. In J. C. M. Baeten, J. K. Lenstra, J. Parrow,
and G. J. Woeginger, editors, ICALP, volume 2719 of Lecture Notes in Computer

Science, pages 300–315. Springer, 2003.

[KN97] E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University Press,
Cambridge, 1997.

[KRW91] M. Karchmer, R. Raz, and A. Wigderson. Super-logarithmic depth lower bounds via
the direct sum in communication complexity. Computational Complexity, 5(3/4):191–
204, 1995. Prelim version CCC 1991.

[KS92] B. Kalyanasundaram and G. Schnitger. The probabilistic communication complexity
of set intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557, Nov. 1992.

[New91] I. Newman. Private vs. common random bits in communication complexity. Informa-

tion Processing Letters, 39(2):67–71, 31 July 1991.

32

[Pau76] W. Paul. Realizing boolean functions on disjoint sets of variables. Theor. Comput.

Sci., 2:383–396, 1976.

[Raz92] Razborov. On the distributed complexity of disjointness. TCS: Theoretical Computer

Science, 106, 1992.

[Raz95] R. Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763–803,
June 1998. Prelim version in STOC ’95.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell System Technical

Journal, 27, 1948. Monograph B-1598.

[Sha03] R. Shaltiel. Towards proving strong direct product theorems. Computational Com-

plexity, 12(1-2):1–22, 2003.

[Uhl74] D. Uhlig. On the synthesis of self-correcting schemes from functional elements with a
small number of reliable elements. Matematicheskie Zametki, 15(6):937–944, 1974.

[Yao82] A. C.-C. Yao. Theory and applications of trapdoor functions (extended abstract). In
FOCS, pages 80–91. IEEE, 1982.

A A simple generalization of Azuma’s inequality

We shall need the following theorem, whose proof appears in [JHM+98]. For completeness, we
reproduce the part of the proof we need here:

Theorem A.1 (Azuma). Let T1, . . . , Tk be real valued random variables such that for every i, we

have E [Ti|Ti−1, . . . , Ti] ≤ 0. Set Ai = (sup(Ti) − inf(Ti)|Ti−1, . . . , T1)
2
. Then if

∑k
i=1 Ai ≤ c, for

every α > 0,

Pr

[

k
∑

i=1

Ti ≥ α

]

≤ exp(−2α2/c).

To prove the theorem, we need the following lemma appearing as Lemma 2.6 in [JHM+98]:

Lemma A.2. Let X be a real valued random variable with E [X] = 0 and X ∈ [a, b] almost surely.

Then E [exp(X)] ≤ exp
(

(b−a)2

8

)

.

Proof of Theorem A.1. First, we assume without loss of generality that E [Ti|Ti−1, . . . , Ti] ≤ 0. We
can do this by changing each random variable Ti to Ti − E [Ti|Ti−1, . . . , T1]. This does not change
any of the conditions above, and only increases Pr[

∑

i Ti ≥ α].
By Markov’s inequality, for every positive λ we have

Pr

[

k
∑

i=1

Ti ≥ α

]

= Pr

[

exp

(

λ
k
∑

i=1

Ti

)

> exp(λα)

]

≤ E

[

exp

(

λ
k
∑

i=1

Ti

)]

exp(−λα)

Next we show by induction on k that E
[

exp
(

λ
∑k

i=1 Ti

)]

≤ sup
(

∏k
i=1 E [exp(λTi)|Ti−1, . . . , T1]

)

.

The case k = 1 is trivial. For general k we compute

33

E

[

exp

(

λ
k
∑

i=1

Ti

)]

= E

[

exp (λT1) E

[

exp

(

λ
k
∑

i=2

Ti

)

|T1

]]

≤ E [exp (λT1)] sup

(

k
∏

i=2

E [exp(λTi)|Ti−1, . . . , T1]

)

by induction

= sup

(

E [exp (λT1)]

k
∏

i=2

E [exp(λTi)|Ti−1, . . . , T1]

)

= sup

(

k
∏

i=1

E [exp(λTi)|Ti−1, . . . , T1]

)

Thus we can bound

Pr

[

k
∑

i=1

Ti ≥ α

]

≤ exp(−λα) sup

(

k
∏

i=1

E [exp(λTi)|Ti−1, . . . , T1]

)

≤ exp(−λα) sup

(

k
∏

i=1

exp

(

λ2Ai

8

)

)

by Lemma A.2

= exp(−λα) sup

(

exp

(

∑k
i=1 λ2Ai

8

))

= exp(−λα) exp

(

sup

(

∑k
i=1 λ2Ai

8

))

≤ exp(−λα + λ2c/8)

Setting λ = 4α/c, we get that

Pr

[

k
∑

i=1

Ti ≥ α

]

≤ exp(−2α2/c)

B Analyzing Rejection Sampling

In this section we give some basic facts about rejection sampling. For a distribution C supported
on some finite set C and a function a : C → [0, 1], Figure 11 describes a generic rejection sampling
algorithm.

We prove some simple properties of this kind of sampling. Let D′ denote the random variable of
the sampled element. Let R denote the random variable that counts the number of rounds before
the algorithm accepts the sample. Then we see that D′ is independent of R, since for any integers
c, c′, D′|R = c has the same distribution as D′|R = c′.

34

Algorithm Rejection Sampling.

1. Sample an element z ∈
R

C.

2. Accept it with probability a(z), else go to the first step.

Figure 11: Generic Rejection Sampling

Proposition B.1. D′ is independent of R.

We then see that D′(w) = Pr[(R = 1) ∧ w is accepted]/Pr[R = 1] = C(w)a(w)/Pr[R = 1]. We
have shown the following claim:

Claim B.2. For some constant α, D′ = αa · C.

Now let a′ : C → [0, 1] be a function such that a′(w) ≥ a(w) for all w ∈ C, and let D denote
the random variable of the sampled element. Set b = a′ − a. Then D = βa′ · C = βC · (a + b)
for some β > 0. Thus, by Claim B.2, there exists a distribution D′′ such that D′ is a convex

combination D = β′D′′ + (1 − β′)D′. In particular, this implies that D′(w)
D(w) ≤ 1

1−β′ . We bound

β′ ≤ Pr[D′ ∈ Supp(D′′)] = Prw∈
R

D[a′(w) > a(w)]. This gives us the following two bounds:

Proposition B.3. Let D = βa′ ·C be a distribution such that a′(w) ≥ a(w) for every w. Then for

every w,
D′(w)

D(w)
≤ 1

1 − Prw∈
R
D[a′(w) > a(w)]

.

Proposition B.4. The expected number of rounds that the above protocol runs for is 1/Pr[R = 1].

Proof. From the construction, we see that E [R] = Pr[R = 1]+(1−Pr[R = 1])(1+E [R]). Rewriting
this, we get E [R] = 1/Pr[R = 1].

C Finding The First Difference in Inputs

Proof Sketch for Lemma 3.15. Without loss of generality, we assume that k = 2t for an integer t (if
not, we can always pad the input strings with 0’s until the lengths are of this form before running
the protocol). For a parameter C, we define a labeled tree of depth C log(k/ǫ) = C(t + log(1/ǫ) as
follows. The root of the tree is labeled by the interval [1, 2t]. For i ranging from 0 to t − 1, every
node at depth i labeled by [a, b] has two children, corresponding to splitting the interval [a, b] into
equal parts. Thus the left one is labeled by the interval [a, b − 2t−i+1] and the right one is labeled
by [a + 2t−i+1, b]. Thus at depth t there are 2t nodes, each labeled by [a, a] for distinct a’s from
[2t]. Every node at depth ≥ t has exactly one child, labeled the same as the parent.

In the protocol, the players shall try to narrow down where the first difference in their inputs
is by taking a walk on the tree. At each step, the players first check that the interval they are
on is correct, and then try to narrow down their search. For any integer a ∈ [k], let xa denote
the prefix of x of length a. To check whether a given interval [a, b] contains the index that they
seek, the players will use public randomness to pick random functions h1 : {0, 1}a → [18] and

35

h2 : {0, 1}b → [18] and compare h1(xa) with h1(ya) and h2(xb) with h2(yb). The probability of
getting an incorrect answer is thus at most 1/9.

For a parameter C, the protocol works as follows:

1. The players set v to be the root of the tree.

2. The players run the tests described above to check whether the index with the first difference
lies in the interval corresponding to v and in those corresponding to v’s children. If the tests
are consistent, and indicate that the interval for v does not contain the index, the players
set v to be the parent of the old v (or leave it unchanged if v is the root). If the tests are
consistent and indicate that the interval of one of the children contains the index, the players
set v to be that child. If the tests are inconsistent, the players leave v unchanged.

3. Step 2 is repeated C(t + log(1/ǫ)) times.

4. If the final vertex is labeled by an interval of the form [a, a], output a. Else conclude that the
input strings are equal.

To analyze the protocol, fix x and y. Note that if x = y, then the protocol never fails. So let
us assume that x 6= y and assume that a is the first index at which x, y differ. Then let w denote
the vertex in the tree of largest depth that is labeled by [a, a]. Next we direct the edges of the
tree so that at every vertex, the only outgoing edge points to the neighbor that is closer to w in
terms of shortest path distance. Then observe that at every step of our protocol, v is changed to a
neighbor that is closer to w with probability at least 2/3. Further, our protocol succeeds as long as
the number of correct steps on the tree exceeds the number of incorrect steps by t. This happens as
long as the number of correct steps is at least C/2(t + log(1/ǫ)) + t/2. Since the expected number
of correct steps is 2C/3(t + log(1/ǫ)), we get that the bad event happens only when we deviate
from the expected number by C/6(t+log(1/ǫ))− t/2 > (C/6− 1/2)(t+log(1/ǫ)). By the Chernoff
bound, the probability that this happens is at most exp(Ω((C/6− 1/2)2(t + log(1/ǫ)))). Setting C
to be a large enough constant makes this error at most ǫ.

36

	Introduction
	Our Results
	Compressing Communication Protocols
	Direct sum theorems
	XOR Lemmas for communication complexity

	Our Techniques
	Compression in the general case
	Compression when the inputs are independent

	Preliminaries
	Information Theory
	Communication Complexity
	Finding differences in inputs

	Proof of the direct sum theorem
	Reduction to Small Information Content
	Protocol compression: the non product case
	A proof sketch
	The actual proof

	Proofs for the Product Case
	A proof sketch
	The actual proof.
	Proof of [theorem:productinfotoreal]Theorem E.4
	A single round
	The whole protocol

	Open problems and final thoughts
	A simple generalization of Azuma's inequality
	Analyzing Rejection Sampling
	Finding The First Difference in Inputs

